数据清洗一是为了解决数据质量问题,二是让数据更加适合做挖掘 一、解决数据质量问题 数据的完整性,比如人的属性中缺少性别、籍贯、年龄等 数据的唯一性,比如不同来源的数据出现重复的情况 数据的权威性,比如同一个指标出现多个来源的数据,且数值不一样 数据 ...
数据清洗,使用python数据清洗cvs里面带中文字符,意图是用字典对应中文字符,即key值是中文字符,value值是index,自增即可 利用字典数据结构没有重复key值的特性,把中文字符映射到了数值index。 python代码如下: data数据时csv格式 上例是真实的数据处理,有两百列属性,三万条数据的原始数据。其中包括中文字符,及缺失值,需要一步步清洗。 备注:发生异常permiss ...
2016-04-18 16:22 0 1646 推荐指数:
数据清洗一是为了解决数据质量问题,二是让数据更加适合做挖掘 一、解决数据质量问题 数据的完整性,比如人的属性中缺少性别、籍贯、年龄等 数据的唯一性,比如不同来源的数据出现重复的情况 数据的权威性,比如同一个指标出现多个来源的数据,且数值不一样 数据 ...
前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记【第7天:数据清洗(1)】 前言 根据我的Python学习计划: Numpy → Pandas ...
接触Python两年多了,还从来没有独立用Python完成一个项目,说来惭愧。最近因为工作需要,用Excel和oracle整理数据貌似不可行了,于是转向Python,理所当然的踩了很多坑,一一记录下来,避免以后再次入坑,毕竟不常用,好了伤疤就会忘了疼··· 业务场景: 领导拿来几个 ...
上一节我们通过爬虫工具爬取了近七万条二手房数据,那么这一节就对这些数据进行预处理,也就是所谓的ETL(Extract-Transform-Load) 一.ETL工具的必要性 数据分析的前提是数据清洗。不论如何高大上的算法,遇到 ...
# -*- coding: utf-8 -*-"""Created on Wed Jul 4 18:40:55 2018 @author: zhen""" import pandas as pdimport numpy as np# 创建空的df,保存测试数据test_df ...
1.数据错误: 错误类型– 脏数据或错误数据• 比如, Age = -2003– 数据不正确• ‘0’ 代表真实的0,还是代表缺失– 数据不一致• 比如收入单位是万元,利润单位是元,或者一个单位是美元,一个是人民币– 数据重复 2.缺失值处理: 处理原则–缺失值少于20%•连续变量 ...
1、知识点 2、中文数据清洗(使用停用词) 3、英文数据清洗(使用停用词) 4、nltk的停用词进行数据清洗 ...
之前发过一篇关于定位csv中的特殊字符的,主要是用到了python的自带的函数,近期又遇到了一些新的问题,比如isdigit()的缺点在于不能判断浮点型,以及小数中有多个小数点的情况。发现还是正则表达式更灵活一些。 更多的字符判断代码可以参考下面 ...