PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维 ...
参考文献:Cand s, E.J., Li, X., Ma, Y., and Wright, J.: Robust principal component analysis , J. ACM, , , , pp. 作者主页有很多关于low rank的代码:http: perception.csl.illinois.edu matrix rank sample code.html 主要算法公式如下 ...
2016-04-08 18:15 8 3599 推荐指数:
PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维 ...
本文摘自:http://www.cnblogs.com/longzhongren/p/4300593.html 以表感谢。感谢 综述: 主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来 ...
主成分分析 (Principal Component Analysis,PCA) 是一种常用的无监督学习方法,这一方法利用正交变换把由线性相关变量表示的观测数据转换为少数几个由线性无关变量表示的数据,线性无关的变量称为主成分。 1 PCA 基本想法 主成分分析中,首先对给定数据进行中 ...
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA、t-SNE的原理就说不过去了吧。跑通软件没什么了不起的,网上那么多教程,copy一下就会。关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题。 学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单。 PCA ...
最近太忙,又有一段时间没写东西了。 pca是机器学习中一个重要的降维技术,是特征提取的代表。关于pca的实现原理,在此不做过多赘述,相关参考书和各大神牛的博客都已经有各种各样的详细介绍。 如需学习相关数学理论,请移驾。T_T 简单说一下pca的实现,首先对于一个矩阵X,我们计算X·XT,显然 ...
KPCA,中文名称”核主成分分析“,是对PCA算法的非线性扩展,言外之意,PCA是线性的,其对于非线性数据往往显得无能为力,例如,不同人之间的人脸图像,肯定存在非线性关系,自己做的基于ORL数据集的实 ...
在因子分析(Factor analysis)中,介绍了一种降维概率模型,用EM算法(EM算法原理详解)估计参数。在这里讨论另外一种降维方法:主元分析法(PCA),这种算法更加直接,只需要进行特征向量的计算,不需要用到EM算法。 假设数据集表示 m 个不同类型汽车的属性,比如最大速度 ...
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助。 这里推荐Mit的Gi ...