扩展卡尔曼滤波的状态方程和观测方程可以是非线性的。在一般情况下,无法确定过程噪声、测量噪声与方程的函数关系,因此可以简化为加性噪声: EKF relies on a linearisation of the evolution and observation ...
简介 已经历经了半个世纪的卡尔曼滤波至今仍然是研究的热点,相关的文章不断被发表。其中许多文章是关于卡尔曼滤波器的新应用,但也不乏改善和扩展滤波器算法的研究。而对算法的研究多着重于将卡尔曼滤波应用于非线性系统。 为什么学界要这么热衷于将卡尔曼滤波器用于非线性系统呢 因为卡尔曼滤波器从一开始就是为线性系统设计的算法,不能用于非线性系统中。但是事实上多数系统都是非线性的,所以如果卡尔曼滤波器不能用在非线 ...
2016-04-11 15:15 5 40294 推荐指数:
扩展卡尔曼滤波的状态方程和观测方程可以是非线性的。在一般情况下,无法确定过程噪声、测量噪声与方程的函数关系,因此可以简化为加性噪声: EKF relies on a linearisation of the evolution and observation ...
卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全包含噪声的测量(英文:measurement)中,估计动态系统的状态,然而简单的卡尔曼滤波必须应用在符合高斯分布的系统中。 百度百科是这样说的,也就是说卡尔曼滤波第一是递归滤波,其次KF用于线性系统。 但经过研究和改进 ...
卡尔曼滤波法 卡尔曼滤波算法是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法,是一种最优化自回归数据处理算法。 通俗地讲,对系统 \(k-1\) 时刻的状态,我们有两种途径来获得系统 \(k\) 时刻的状态。一种是根据常识或者系统以往的状态表现来预测 \(k ...
这一章将介绍卡尔曼滤波、扩展卡尔曼滤波以及无迹卡尔曼滤波,并从贝叶斯滤波的角度来进行分析并完成数学推导。如果您对贝叶斯滤波不了解,可以查阅相关书籍或阅读 【概率机器人 2 递归状态估计】。 这三种滤波方式都假设状态变量 $\mathbf{x}_t$ 的置信度 $\mathrm{bel ...
废话 在学长们不厌其烦地教导后,我想我大概也许可能。。。知道卡尔曼滤波是个什么了,,,,,, 我觉得对于我们初学菜鸟入门级别的,可能浅显粗俗的话更容易理解一些。所以,本贴不包含原理以及公式推导,仅是自己的一点心得——关于Kalman滤波的应用(所以写论文的朋友千万不要直接Copy)。如有 ...
卡尔曼滤波的推导 1 最小二乘法 在一个线性系统中,若\(x\)为常量,是我们要估计的量,关于\(x\)的观测方程如下: \[y = Hx + v \tag{1.1} \] \(H\)是观测矩阵(或者说算符),\(v\)是噪音,\(y\)是观察量 ...
code outputs ...
什么是卡尔曼滤波? 你可以在任何含有不确定信息的动态系统中使用卡尔曼滤波,对系统下一步的走向做出有根据的预测,即使伴随着各种干扰,卡尔曼滤波总是能指出真实发生的情况。 在连续变化的系统中使用卡尔曼滤波是非常理想的,它具有占用内存小的优点(除了前一个状态量外,不需要保留其它历史数据 ...