卷积神经网络(CNN) 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型 ...
卷积神经网络 CNN 概述 从多层感知器 MLP 说起 感知器 多层感知器 输入层 隐层 隐层 输出层 Back Propagation 存在的问题 从MLP到CNN CNN的前世今生 CNN的预测过程 卷积 下采样 光栅化 多层感知器预测 CNN的参数估计 多层感知器层 光栅化层 池化层 卷积层 最后一公里:Softmax CNN的实现 思路 其他 最近仔细学习了一下卷积神经网络 CNN,Co ...
2016-03-31 21:39 3 20713 推荐指数:
卷积神经网络(CNN) 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型 ...
1. 卷积神经网络结构介绍 卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。 CNN 有2大特点: 能够有效的将大数据量的图片降维成小数据量 能够有效的保留图片特征,符合图片处理的原则 目前 CNN 已经得到了广泛的应用,比如:人脸识别 ...
卷积神经网络CNN 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 卷积神经网络(Convolutional Neural Network,CNN 或ConvNet)是一种具有局部连接、权重共享等特性的深层前馈神经网络。卷积 ...
神经网络,听起来像是计算机科学、生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力的革新的一 ...
卷积神经网络介绍 卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。 最典型的卷积网络,由卷积层、池化层、全连接层组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。 卷积层完成的操作,可以认为是受局部感受野概念的启发,而池化 ...
卷积神经网络(CNN) 1.1二维卷积层 卷积神经网络是含有卷积层的神经网络,均使用最常见的二维卷积层,它有高和宽两个空间维度,常用来处理图像数据。 1.1.1二维互相关运算 在二维卷积层中,一个二维输入数组和一个二维核数组通过互相关运算输出一个二维数组 ...
from http://blog.jobbole.com/113819/?utm_source=blog.jobbole.com&utm_medium=relatedPosts 什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络 ...
卷积神经网络的结构由输入层、卷积神经层(Convolutional Layer)、下采样层(Pooling Layer)、全连接层(Fully Connected Network)及输出层构成[20]。其中卷积神经网络层、下采样层、全连接被合称为隐含层。 在卷积 ...