...
...
. 用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点,否则为前景点. 混合高斯模 ...
1,CodeBook算法流程介绍 CodeBook算法的基本思想是得到每个像素的时间序列模型。这种模型能很好地处理时间起伏,缺点是需要消耗大量的内存。CodeBook算法为当前图像的每一个像素建 ...
1,CodeBook的来源 先考虑平均背景的建模方法。该方法是针对每一个像素,累积若干帧的像素值,然后计算平均值和方差,以此来建立背景模型,相当于模型的每一个像素含有两个特征值,这两个特征值只是单纯的统计量,没有记录该像素值的历史起伏,即没有考虑时间序列和噪声干扰,不具备鲁棒性,因此建模时不能有 ...
背景建模 帧差法 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。帧差法非常简单,但是会 引入噪音和空洞问题 ...
转自:http://blog.csdn.net/jinshengtao/article/details/26278725 一、理论 混合高斯背景建模是基于像素样本统计信息的背景表示方法,利用像素在较长时间内大量样本值的概率密度等统计信息(如模式数量、每个模式的均值和标准差)表示背景 ...
目前,基于二值化图像提取运动目标仍具有广泛的应用。但是,在提取运动目标之前必须进行背景建模。 背景建模的方法很多,如平均法,最大值最小值统计法,单高斯建模法,加权平均法等,而混合高斯背景建模应该来说是比较成功的一种。 为什么这么说呢? 机器视觉算法提取运动目标面临的基本问题:图像抖动,噪声干扰 ...
参考文献 Improved Adaptive Gaussian Mixture Model for Background Subtraction ICPR 2004 创新点:自适应调整K的大小,而不是固定的3~5. 实际场景中,不同的区域背景的状态个数通常是不一样的,随着场景的变化,同一个区域 ...