计算频繁项集: 首先生成一个数据集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
使用场景如: 用户频道属性分析 用户忠诚度分析 用户偏好路径分析 用户偏好终端分析 用户访问网站时间分析 用户浏览内容分析 例子:一用户某次访问网站的路径示意图 Apriori算法 需要扫描多个事物数据集,增加IO开销。会产生 的k次方频繁项集。 FP Tree算法 概念: 树 链 节点 节点的前向路径 单支 多支 条件基 若Tree为单支,则输出整条单支和条件基BASE,支持度为单支中所有节点支 ...
2016-03-30 18:44 0 2182 推荐指数:
计算频繁项集: 首先生成一个数据集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果。关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系。其中“频繁”是由人为设定的一个阈值即支持度 (support)来衡量,“紧密”也是由人为设定的一个 ...
频繁项集------->产生强关联规则的过程 1.由Apriori算法(当然别的也可以)产生频繁项集 2.根据选定的频繁项集,找到它所有的非空子集 3.强关联规则需要满足最小支持度和最小置性度 (假设关联规则是:A=>B , support(A=>B)= { P ...
(关联规则)三个 求频繁项集: 对于如表5.5所示的事务集合,设最小支持度计数为3,采用Apr ...
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库。于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效的一种。 名词约定 举个例子,设事务数据库为: 每一行为一个 ...
等各个方面。关联规则还可以应用于文本挖掘、商品广告有机分析和网络故障分析等领域。 经典的关联规则挖掘算法包 ...
关联分析是数据挖掘中常用的分析方法。一个常见的需求比如说寻找出经常一起出现的项目集合。 引入一个定义,项集的支持度(support),是指所有包含这个项集的集合在所有数据集中出现的比例。 规定一个最小支持度,那么不小于这个最小支持度的项集称为频繁项集(frequent item set ...
关联分析 概述 关联分析是数据挖掘的核心技术之一,其关联规则模型及数据挖掘算法是由 IBM 公司Almaden研究中心的R.Agrawal在1993年首先提出的,目的是从大量数据中发现项集之间的有趣关联或相互关系,其中最经典的Apriori算法在关联规则分析领域具有很大的影响力。 1.项集 ...