1,CodeBook算法流程介绍 CodeBook算法的基本思想是得到每个像素的时间序列模型。这种模型能很好地处理时间起伏,缺点是需要消耗大量的内存。CodeBook算法为当前图像的每一个像素建立一个CodeBook(CB)结构,每个CodeBook结构又由多个CodeWord(CW)组成 ...
,CodeBook的来源 先考虑平均背景的建模方法。该方法是针对每一个像素,累积若干帧的像素值,然后计算平均值和方差,以此来建立背景模型,相当于模型的每一个像素含有两个特征值,这两个特征值只是单纯的统计量,没有记录该像素值的历史起伏,即没有考虑时间序列和噪声干扰,不具备鲁棒性,因此建模时不能有运动前景的部分,要求光线保持不变。 如果我们考虑到时间起伏序列建模,比如利用 帧图像建模,对于每一个像素 ...
2016-03-17 20:17 0 2539 推荐指数:
1,CodeBook算法流程介绍 CodeBook算法的基本思想是得到每个像素的时间序列模型。这种模型能很好地处理时间起伏,缺点是需要消耗大量的内存。CodeBook算法为当前图像的每一个像素建立一个CodeBook(CB)结构,每个CodeBook结构又由多个CodeWord(CW)组成 ...
...
背景建模 帧差法 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。帧差法非常简单,但是会 引入噪音和空洞问题 ...
Opencv--背景消除建模(BSM) 在opencv中有两种方法可以进行背景消除: 其一、基于机器学习(Knn--K个最近邻)背景消除建模 其一、基于图像分割(GMM,抗干扰图像分割)背景消除建模 BS ,Background Subtraction 相关API ...
一、概述 案例:使用MOG和KNN实现视频背景消除建模,使用OpenCV中的createBackgroundSubtractorMOG()和createBackgroundSubtractorKNN()来实现 1.createBackgroundSubtractorMOG()参数介绍 ...
前景分割中一个非常重要的研究方向就是背景减图法,因为背景减图的方法简单,原理容易被想到,且在智能视频监控领域中,摄像机很多情况下是固定的,且背景也是基本不变或者是缓慢变换的,在这种场合背景减图法的应用驱使了其不少科研人员去研究它。 但是背景减图获得前景图像的方法缺点 ...
SOBS(self-Organizing through artificial neural networks)是一种基于自组织神经网络的背景差分算法,主要是借鉴神经网络的特性,一个网络输入节点,对应多个中间节点,将背景模型中的一个像素映射到模型的多个位置,并采用了像素邻域空间相关的更新 ...
ViBe是一种像素级的背景建模、前景检测算法,该算法主要不同之处是背景模型的更新策略,随机选择需要替换的像素的样本,随机选择邻域像素进行更新。在无法确定像素变化的模型时,随机的更新策略,在一定程度上可以模拟像素变化的不确定性。 背景模型的初始化 初始化是建立背景模型的过程,一般的检测 ...