四、序列最小优化算法(smo算法) 1、smo算法基本思想 支持向量机的学习问题可以形式化为求解凸二次规划问题。 这样的凸二次规划问题具有全局最优解, 并且有许多最优化算法可以用于这一问题的求解。 但是当训练样本容量很大时, 这些算法往往变得非常低效, 以致无法使用。 所以,如何高效地实现 ...
SMO例子: View Code 下面是测试集 View Code 下面是结果: 以上推导内容转自:http: liuhongjiang.github.io tech blog svm smo ...
2016-03-16 14:37 0 2247 推荐指数:
四、序列最小优化算法(smo算法) 1、smo算法基本思想 支持向量机的学习问题可以形式化为求解凸二次规划问题。 这样的凸二次规划问题具有全局最优解, 并且有许多最优化算法可以用于这一问题的求解。 但是当训练样本容量很大时, 这些算法往往变得非常低效, 以致无法使用。 所以,如何高效地实现 ...
Recursive Least Square(RLS) 最小二乘算法(Least Square)解决的问题是一个多元线性拟合问题: \(\{a_1,a_2,a_3,...,a_n,b\}\), 其中\(a_i\)为自变量, \(b\)为响应值. 在线系统会不断获得新的观测值\(\{a_1^i ...
一、最小二乘法 对于给定的数据集\(D = {(x_1,y_1),(x_2,y_2), ...,(x_m,y_m)}\),其中\(x_i=(x_{i1};x_{i2}; ...;x_{id})\)。 对上述数据进行拟合: \[f(x_i)= \hat \omega^T \hat{x_i ...
机器学习算法实践:Platt SMO 和遗传算法优化 SVM 之前实现了简单的SMO算法来优化SVM的对偶问题,其中在选取α的时候使用的是两重循环通过完全随机的方式选取,具体的实现参考《机器学习算法实践-SVM中的SMO算法》。(http://pytlab.github.io/2017 ...
无约束极小值的最优化条件: 关于多元函数极小值点的必要条件: 满足的点称之为f(x)的驻点或稳定点,但是反过来,满足梯度条件的点不一定是f(x)的局部极小值。因此,定理转化为求解下面的方程组问题: 对于上面 ...
本文介绍了Bregman迭代算法,Linearized Bregman算法(及在求解Basis Pursuit问题中的应用)和Split Bregman算法(及在求解图像TV滤波问题中的应用)。 由于初学,加之水平有限,文中会有疏漏错误之处,希望大家批评指正赐教。 更新记录 本文持续更新 ...
动量法的结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲就是梯度高度敏感于参数空间的某些方向)的。 2.加速学习 3.一般将参数设为0.5,0.9,或者0.99,分别表示最大速度2倍,10倍,100倍于SGD的算法。 4.通过速度v,来积累了之间梯度指数级 ...
思路:线搜索最优化算法,一般是先确定迭代方向(下降方向),然后确定迭代步长; 信赖域方法直接求得迭代位移; 算法分析 第\(k\)次迭代,确定迭代位移的问题为(信赖域子问题): \[min q_k(d)=g_k^Td+\frac{1}{2}d^TB_kd_k ...