L1和L2正则都是比较常见和常用的正则化项,都可以达到防止过拟合的效果。L1正则化的解具有稀疏性,可用于特征选择。L2正则化的解都比较小,抗扰动能力强。 L2正则化 对模型参数的L2正则项为 即权重向量中各个元素的平方和,通常取1/2。L2正则也经常被称作“权重衰减 ...
在机器学习中,无论是分类还是回归,都可能存在由于特征过多而导致的过拟合问题。当然解决的办法有 减少特征,留取最重要的特征。 惩罚不重要的特征的权重。 但是通常情况下,我们不知道应该惩罚哪些特征的权重取值。通过正则化方法可以防止过拟合,提高泛化能力。 先来看看L 正则化方法。对于之前梯度下降讲到的损失函数来说,在代价函数后面加上一个正则化项,得到 注意是从 开始的。对其求偏导后得到 然后得到梯度下降 ...
2016-03-11 16:25 0 4585 推荐指数:
L1和L2正则都是比较常见和常用的正则化项,都可以达到防止过拟合的效果。L1正则化的解具有稀疏性,可用于特征选择。L2正则化的解都比较小,抗扰动能力强。 L2正则化 对模型参数的L2正则项为 即权重向量中各个元素的平方和,通常取1/2。L2正则也经常被称作“权重衰减 ...
欧氏距离(Euclidean distance)也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。 L ...
论文 Bag of Tricks for Image Classification with Convolutional Neural Networks. 中提到,加 L2 正则就相当于将该权重趋向 0,而对于 CNN 而言,一般只对卷积层和全连接层的 weights 进行 L2(weight ...
TensorFlow L2正则化 L2正则化在机器学习和深度学习非常常用,在TensorFlow中使用L2正则化非常方便,仅需将下面的运算结果加到损失函数后面即可 ...
一、范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数。 一般分为L0、L1、L2与L_infinity范数。 二、范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while ...
稀疏性表示数据中心0占比比较大 引西瓜书中P252原文: 对于损失函数后面加入惩罚函数可以降低过拟合的风险,惩罚函数使用L2范数,则称为岭回归,L2范数相当与给w加入先验,需要要求w满足某一分布,L2范数表示数据服从高斯分布,而L1范数表示数据服从拉普拉斯分布。从拉普拉斯函数和高斯 ...
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为平均绝对值误差(MAE)。总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 ...
...