查全率查准率是从信息检索来的,那么我们就得先看看原来的是怎么定义的: 查全率——它是指检出的相关文献量与检索系统中相关文献总量的比率 ...
之前建立了一个SVM based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示。可是,也看了很多代码,但基本都是展示二分类,当扩展成多分类时就会出现问题,所以我的论文最后就只好画了boundary的图了。今天在研究Random Forest时,找到了下面的demo的MATLAB代码,该代码很好的实现了各分类区域 ...
2016-03-06 19:57 0 4494 推荐指数:
查全率查准率是从信息检索来的,那么我们就得先看看原来的是怎么定义的: 查全率——它是指检出的相关文献量与检索系统中相关文献总量的比率 ...
%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all % Instructions % ---------- ...
关于多分类问题中的混淆矩阵,精准率 具体操作 (在notebook中) 使用手写识别数据集,使用全部的样本数据,不做限制,对数据进行分割,使用逻辑回归算法,求解出准确度 结果如下 进行预测 计算精准率,需要将average设置为micro 结果如下 计算混淆矩阵 ...
二分类转载自https://blog.csdn.net/on2way/article/details/47838337 多分类转载自https://blog.csdn.net/on2way/article/details/48006539 作为(曾)被认为两大最好的监督分类算法 ...
其实,之前就接触过随机森林,但仅仅是用来做分类和回归。最近,因为要实现一个idea,想到用随机森林做ensemble learning才具体的来看其理论知识。随机森林主要是用到决策树的理论,也就是用决策树来对特征进行选择。而在特征选择的过程中用到的是熵的概念,其主要实现算法有ID3 ...
多分类问题:有N个类别C1,C2,...,Cn,多分类学习的基本思路是“拆解法”,即将多分类任务拆分为若干个而分类任务求解,最经典的拆分策略是:“一对一”,“一对多”,“多对多” (1)一对一 给定数据集D={(x1,y1),(x2,y2),...,(xn,yn)},yi€{c1,c2 ...
https://github.com/lxztju/densenet-pytorch ...
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...