MapReduce参数优化 资源相关参数 这些参数都需要在mapred-site.xml中配置 mapreduce.map.memory.mb 一个 MapTask 可使用的资源上限(单位:MB),默认为1024 如果 MapTask 实际使用的资源量 ...
集群的优化 合理分配map和reduce任务的数量 单个节点上map任务 reduce任务的最大数量 其他配置 io.file.buffer.size hadoop访问文件的IO操作都需要通过代码库。因此,在很多情况下,io.file.buffer.size都被用来设置缓存的大小不论是对硬盘或者是网络操作来讲,较大的缓存都可以提供更高的数据传输,但这也就意味着更大的内存消耗和延迟 这个参数要设置为 ...
2016-03-03 23:21 0 6836 推荐指数:
MapReduce参数优化 资源相关参数 这些参数都需要在mapred-site.xml中配置 mapreduce.map.memory.mb 一个 MapTask 可使用的资源上限(单位:MB),默认为1024 如果 MapTask 实际使用的资源量 ...
mapreduce程序效率的瓶颈在于两点: 1:计算机性能 2:I/O操作优化 优化无非包括时间性能和空间性能两个方面,存在一下常见的优化策略: 1:输入的文件尽量采用大文件 众多的小文件会导致map数量众多,每个新的map任务都会造成一些性能的损失。所以可以将一些 ...
MapReduce基本原理和高性能网络下优化: Mapreduce概述 Mapreduce式谷歌开源的一项重要技术,是一个编程模型,用来进行大数据量的计算,对于大数据量的计算通常采用的处理方式式并行计算,对于许多开发者来说,自己完全实现一个并行计算程序难度太大.而MapReduce就是一种简化 ...
MapReduce优化优化(1)资源相关参数:以下参数是在自己的 MapReduce 应用程序中配置就可以生效 mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上限(单位:MB),默认为 1024。如果 Map Task 实际使用的资源量超过该值,则会被强制 ...
Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等等。对Hive的调优既包含对HiveSQL语句本身的优化,也包含Hive配置项和MR方面的调整。 列裁剪 ...
https://www.cnblogs.com/felixzh/p/8604188.html 1. Map阶段 1.1 从HDFS读取数据 1.1.1 读取数据产生多少个Mapp ...
http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段 ...
一、调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务。主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为1 ...