本篇博文是数据挖掘部分的首篇,思路主要是先聊聊相似度的理论部分,下一篇是代码实战。 我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较。只有通过比较才能得出结论,究竟是相同还是不同。但是万物真的有这么极端的区分 ...
前阵子做了一些IT opreation analysis的research,从产线上取了一些J EE server运行状态的数据 CPU,Menory... ,打算通过训练JVM的数据来建立分类模型,用于server状态的分类。这个过程中发现最难的地方就是构建训练数据集,训练数据必须要有明确的type flag,用以表示数据向量采集当时,server所处的状态类别。简单的说,就是大家不清楚哪些数 ...
2016-03-04 22:58 0 5429 推荐指数:
本篇博文是数据挖掘部分的首篇,思路主要是先聊聊相似度的理论部分,下一篇是代码实战。 我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较。只有通过比较才能得出结论,究竟是相同还是不同。但是万物真的有这么极端的区分 ...
在Spark1.2之后,Spark自带实现TF-IDF接口,只要直接调用就可以,但实际上,Spark自带的词典大小设置较于古板,如果设置小了,则导致无法计算,如果设置大了,Driver端回收数据的时候,容易发生OOM,所以更多时候都是自己根据实际情况手动实现TF-IDF ...
1,$TF-IDF$算法 $TF$是指归一化后的词频,$IDF$是指逆文档频率。给定一个文档集合$D$,有$d_1, d_2, d_3, ......, d_n \in D$。文档集合总共包含$m$个词(注:一般在计算$TF-IDF$时会去除如“的”这一类的停用词),有$w_1, w_2 ...
1.信息检索中的重要发明TF-IDF TF-IDF是一种统计方法,TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF词频(Term Frequency)指的是某一个给定的词语在该文 ...
这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度。 TF-IDF与n-gram的结合可看我的这篇文章:https://www.cnblogs.com/Luv-GEM ...
1.文本处理的一般流程 上图中: 清洗包括无用的标签(例如从网上爬取的文本中可能包含html标签)、特殊的符号(!感叹号、省略号等)、停用词、大写转小写 标准化包括stemming、lemmazatic(就是对英文词汇中的名词、动词转换化标准形态) 本篇博客主要包括:分词(word ...
背景知识: (1)tf-idf 按照词TF-IDF值来衡量该词在该文档中的重要性的指导思想:如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。 tf–idf is the product of two ...
##基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim:进行语料库制作和算法训练 ##结巴(jieba)分词 ...