一、概述 本文将讲述Bit-Map算法的相关原理,Bit-Map算法的一些利用场景,例如BitMap解决海量数据寻找重复、判断个别元素是否在海量数据当中等问题.最后说说BitMap的特点已经在各个场景的使用性。二、Bit-Map算法先看看这样的一个场景:给一台普通PC,2G内存,要求处理一个包含 ...
有这样一种场景:一台普通PC, G内存,要求处理一个包含 亿个不重复并且没有排过序的无符号的int整数,给出一个整数,问如果快速地判断这个整数是否在文件 亿个数据当中 问题思考: 亿个int占 亿 大概为 . G左右,很明显内存只有 G,放不下,因此不可能将这 亿数据放到内存中计算。要快速的解决这个问题最好的方案就是将数据搁内存了,所以现在的问题就在如何在 G内存空间以内存储着 亿整数。一个int ...
2016-03-02 21:11 0 1949 推荐指数:
一、概述 本文将讲述Bit-Map算法的相关原理,Bit-Map算法的一些利用场景,例如BitMap解决海量数据寻找重复、判断个别元素是否在海量数据当中等问题.最后说说BitMap的特点已经在各个场景的使用性。二、Bit-Map算法先看看这样的一个场景:给一台普通PC,2G内存,要求处理一个包含 ...
1. 海量数据处理分析 (作者 北京迈思奇科技有限公司 戴子良) 原文地址: 转载自:http://blog.csdn.net/DaiZiLiang/archive/2006/12/06/1432193.aspx 笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂 ...
BAT、FLAG(Facebook,LinkedIn,Amazon/Apple,Google)这类涉及到大数据的公司面试的时候都喜欢问关于海量数据处理的问题,本文将对海量处理问题进行总结。 我买了July出的《编程之法》,对海量数据处理问题有总结。 问题介绍: 所谓海量数据处理,无非 ...
在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至 过亿,那不是手工能解决的了,必须通过工具或者程序进行 ...
简介及适用场景 如果想在数据仓库中快速查询结果,可以使用greenplum。 Greenplum数据库也简称GPDB。它拥有丰富的特性: 第一,完善的标准支持:GPDB完全支持ANSI SQL 2008标准和SQL OLAP 2003 扩展;从应用编程接口上讲,它支持ODBC和JDBC。完善 ...
海量数据,找出最热门(频率最高)的某一数据,或前100的数据。一般情况下数据大小几百个G,而内存限制就1个G,完成计算。 应用场景: (1)海量日志数据,提取出某日访问百度次数最多的那个IP; (2)搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来, 假设目前有一千万个记录 ...
前言:本文是对博文http://blog.csdn.net/v_july_v/article/details/7085669的总结和引用 一,什么是倒排索引 问题描述:文档检索系统,查询那些文件包 ...
本文转自https://segmentfault.com/a/1190000006158186 当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般 ...