Radial basis function(径向基函数) 径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点成为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向 ...
所谓径向基函数 Radial Basis Function 简称 RBF , 就是某种沿径向对称的标量函数。 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 ,可记作 k x xc , 其作用往往是局部的 , 即当x远离xc时函数取值很小。 最常用的径向基函数是高斯核函数 ,形式为 k x xc exp x xc 其中xc为核函数中心, 为函数的宽度参数 , 控制了函数的径向作用范 ...
2016-03-02 11:36 0 12699 推荐指数:
Radial basis function(径向基函数) 径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点成为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向 ...
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。 简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调 ...
XVec表示X向量。||XVec||表示向量长度。r表示两点距离。r^2表示r的平方。k(XVec,YVec) = exp(-1/(2*sigma^2)*(r^2))= exp(-gamma*r^2) ...
newrbe x->表示向量 1.这个形式的神经网络不需要训练, 2.net模型中会保存全部训练数据即矩阵 IW中,新输入的样本p-> 会跟IW矩阵中的每个样本计算距离 ...
径向基函数(RBF)神经网络 RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。 简单说明一下 ...
一、核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'、y',K(x, y) 就是返回新的样本经过计算得到的值; 在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x' . y' 得到的值 ...
径向基函数(Radical Basis Function,RBF)。径向基函数(Radical Ba ...
华夏35度 Data Mining 径向基函数(RBF)神经网络 RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列 ...