声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。 2. 我不确定的地方用了“应该”二字 首先,通俗说一下,CNN的存在是为了解 ...
以自带models中mnist的convolutional.py为例: .filter要与输入数据类型相同 float 或float ,四个参数为 filter height, filter width, in channels, out channels ,即卷积核的高 宽 输入通道数 输出通道数 feature map ,如: , , NUM CHANNELS, , x filter, de ...
2016-02-20 18:13 0 4745 推荐指数:
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。 2. 我不确定的地方用了“应该”二字 首先,通俗说一下,CNN的存在是为了解 ...
卷积核的参数量和计算量 卷积计算量 通常只看乘法计算量: 标准卷积方式 C代表通道数,Ci输入通道数,C0为输出通道数。H*W为长宽 如下图;当前特征图Ci * H * W ,把特征图复制C0个,分别与3*3*Ci的卷积核进行卷积,输出特征图大小C0 * H * W ...
根据网上查询到的说法,参数就是在卷积神经网络中可以被训练的参数,比如卷积核的权值和偏移等等,而超参数是一些预先设定好并且无法改变的,比如说是卷积核的个数等。 另外还有一个最最基础的概念,就是卷积核的权值共享,这个共享其实指的是一个卷积核在一个输入中的不同位置是共享参数的(意思就是一个输入使用 ...
,如图所示: 得到的“新照片”的大小为:28*28*6. 其实,每个卷积层之后都会跟一个相应的 ...
但是,1*1卷积核的作用不仅仅于此。 特征变换 1*1卷积是在Network ...
CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者写的很好,解决了很多基础问题。 feather map ...
以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...
每个卷积核具有长、宽、深三个维度。 卷积核的长、宽都是人为指定的,长X宽也被称为卷积核的尺寸,常用的尺寸为3X3,5X5等;卷积核的深度与当前图像的深度(feather map的张数)相同,所以指定卷积核时,只需指定其长和宽两个参数。 例如,在原始图像层 (输入层),如果图像是灰度图像 ...