简述 卢卡斯定理是用于求c(n,m) mod p,p为素数的值。 题目中求n和m很大的组合数时,结果一般都会溢出,所以经常会求组合数%p的某个值。当p大于m时,我们可以直接根据定义求分母在模p意义下的乘法逆元求出结果: 但当p<m时,分母的乘法逆元可能不存在(m可能是p ...
记得前几章的组合数吧 我们学了O n 的做法,加上逆元,我们又会了O n 的做法 现在来了新问题,如果n和m很大呢, 比如求C n, m p ,n lt e ,m lt e ,p lt e 看到没有,n和m这么大,但是p却很小,我们要利用这个p 数论就是这么无聊的东西,我要是让n e ,m e ,p e 你有本事给我算啊 ,还不是一样算不出来 然后,我们著名的卢卡斯 Lucas 在人群中站了出来 ...
2016-02-19 01:36 3 4964 推荐指数:
简述 卢卡斯定理是用于求c(n,m) mod p,p为素数的值。 题目中求n和m很大的组合数时,结果一般都会溢出,所以经常会求组合数%p的某个值。当p大于m时,我们可以直接根据定义求分母在模p意义下的乘法逆元求出结果: 但当p<m时,分母的乘法逆元可能不存在(m可能是p ...
卢卡斯定理 对于非负整数$a$,$b$和质数$p$,有$$C_{a}^{b} \equiv C_{a~mod~p}^{b~mod~p} \cdot C_{\lfloor{a/p}\rfloor}^{\lfloor{b/p}\rfloor}~~\left( {mod~p} \right ...
定义 若 \(p\) 为质数,且\(a\ge b\ge1\),则有: \[C_{a}^{b}\equiv C_{a/p}^{b/p}\cdot C_{a (mod\,p)}^{b(mod\, ...
公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 例题 HDU 3037 解析:m个相同的豆子,放到n个不同的树 ...
前几天gryz组织我们听了几天数论,蒟蒻 Nanjo_Qi 自然是听得一点问题也没有。 于是只能自己yy着学一点其他的数学的东西,正巧在那之前刚刚学会卢卡斯定理,于是现在就来水一篇博客。 其实是不想做题了。正巧机房装修,吵的一批。 卢卡斯(Lucas)定理是什么? 他是用来求组合数 C(n ...
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p \] 我们将这个问题由总体到局部地分为三个层次解决。 层次一:原问题 首先对\(p\)进行质因数分解: \[p=\prod_i p_i^{k_i} \] 显然\(p_i ...
------------------------------------------------------------------------------------------- 这是蒟蒻对扩展卢卡斯的一些见解如有错误欢迎指出,不胜感激 普通卢卡斯 ...
组合数并不陌生(´・ω・`) 我们都学过组合数 会求组合数吗 一般我们用杨辉三角性质 杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界) 第n行,第m个就是,就是C(n, m) (从0开始) 电脑上我们就开一个数组保存 ...