既能做分类,又能做回归。分类:基尼值作为节点分类依据。回归:最小方差作为节点的依据。 节点越不纯,基尼值越大,熵值越大 pi表示在信息熵部分中有介绍,如下图中介绍 方差越小越好。 选择最小的那个0.3 ...
Python实现CART 基尼指数 运行环境 Pyhton treePlotter模块 画图所需,不画图可不必 matplotlib 如果使用上面的模块必须 计算过程 输入样例 代码实现 输出样例 附加文件 treePlotter.py 需要配置matplotlib才能使用 ...
2016-02-03 18:20 1 7466 推荐指数:
既能做分类,又能做回归。分类:基尼值作为节点分类依据。回归:最小方差作为节点的依据。 节点越不纯,基尼值越大,熵值越大 pi表示在信息熵部分中有介绍,如下图中介绍 方差越小越好。 选择最小的那个0.3 ...
基尼指数(Gini不纯度)表示在样本集合中一个随机选中的样本被分错的概率。 注意:Gini指数越小表示集合中被选中的样本被参错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。当集合中所有样本为一个类时,基尼指数为0. 基尼指数的计算方法为:其中,pk表示样本属于第k个类别的概率 举例 ...
#################################################################################################### ...
讨论这个话题。本文想讨论的是决策树中两个非常重要的决策指标:熵和基尼指数。熵和基尼指数都是用来定义随机 ...
ID3、C4.5和CART三种经典的决策树模型分别使用了信息增益、信息增益比和基尼指数作为选择最优的划分属性的准则来构建决策树。以分类树来说,构建决策树的过程就是从根节点(整个数据集)向下进行节点分裂(划分数据子集)的过程,每次划分需要让分裂后的每个子集内部尽可能包含同一类样本。信息增益和信息增益 ...
1 概念 CART决策树使用"基尼指数" (Gini index)来选择划分属性,分类和回归任务都可用。 基尼值Gini(D):从数据集D中随机抽取两个样本,其类别标记不一致的概率 Gini(D)值越小,数据集D的纯度越高。 2 计算 数据集 D ...
基尼系数是指国际上通用的、用以衡量一个国家或地区居民收入差距的常用指标。基尼系数介于0-1之间,基尼系数越大,表示不平等程度越高。 收入基尼系数 其具体含义是指,在全部 居民收入中,用于进行不平均分配的那部分收入所占的比例。基尼系数最大为“1”,最小等于“0”。前者表示居民之间的收入分配 ...
概念 基尼系数是指国际上通用的、用以衡量一个国家或地区居民收入差距的常用指标。基尼系数介于0-1之间,基尼系数越大,表示不平等程度越高。 通用计算方法 赫希曼根据洛伦茨曲线提出的判断分配平等程度的指标。设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配 ...