Python实现ID3(信息增益) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 输入样例 代码实现 输出样例 附加文件 treePlotter.py ...
Python实现C . 信息增益率 运行环境 Pyhton treePlotter模块 画图所需,不画图可不必 matplotlib 如果使用上面的模块必须 计算过程 输入样例 代码实现 输出样例 附加文件 treePlotter.py 需要配置matplotlib才能使用 ...
2016-02-03 18:13 0 15133 推荐指数:
Python实现ID3(信息增益) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 输入样例 代码实现 输出样例 附加文件 treePlotter.py ...
离散特征信息增益计算 数据来自《.统计学习方法——李航》5.2.1节中贷款申请样本数据表 利用pandas的value_counts(),快速计算 refference:python详细步骤计算信息增益 ...
整理一下这几个量的计算公式,便于记忆 采用信息增益率可以解决ID3算法中存在的问题,因此将采用信息增益率作为判定划分属性好坏的方法称为C4.5。需要注意的是,增益率准则对属性取值较少的时候会有偏好,为了解决这个问题,C4.5并不是直接选择增益率最大的属性作为划分属性,而是之前 ...
上数据挖掘课的时候算过GINI指数,在寻找降维算法的时候突然看到了信息增益算法,突然发现信息增益算法和课上算的GINI指数很相似,于是就用在这次文本分类实验当中。总的来说信息增益算法是为了求特征t对于分类的贡献大小。贡献大则称信息增益大、贡献小信息增益小。文本分类自然是找那些对分类贡献大的词汇 ...
一:基础知识 1:个体信息量 -long2pi 2:平均信息量(熵) Info(D)=-Σi=1...n(pilog2pi) 比如我们将一个立方体A抛向空中,记落地时着地的面为f1,f1的取值为{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...
就是一个map的过程。C4.5分类树就是决策树算法中最流行的一种。下面给出一个数据集作为算法例子的基础, ...
为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。 之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小 ...
数据集如下: 基于信息增益的ID3决策树的原理这里不再赘述,读者如果不明白可参考西瓜书对这部分内容的讲解。 python实现代码如下: 绘制的决策树如下: ...