决策树入门 决策树是分类算法中最重要的算法,重点 决策树算法在电信营业中怎么工作? 这个工人也是流失的,在外网转移比处虽然没有特征来判断,但是在此节点处流失率有三个分支概率更大 ...
Python实现ID 信息增益 运行环境 Pyhton treePlotter模块 画图所需,不画图可不必 matplotlib 如果使用上面的模块必须 计算过程 输入样例 代码实现 输出样例 附加文件 treePlotter.py 需要配置matplotlib才能使用 ...
2016-02-03 18:07 0 2953 推荐指数:
决策树入门 决策树是分类算法中最重要的算法,重点 决策树算法在电信营业中怎么工作? 这个工人也是流失的,在外网转移比处虽然没有特征来判断,但是在此节点处流失率有三个分支概率更大 ...
离散特征信息增益计算 数据来自《.统计学习方法——李航》5.2.1节中贷款申请样本数据表 利用pandas的value_counts(),快速计算 refference:python详细步骤计算信息增益 ...
Python实现C4.5(信息增益率) 运行环境 Pyhton3 treePlotter模块(画图所需,不画图可不必) matplotlib(如果使用上面的模块必须) 计算过程 输入样例 代码实现 输出样例 附加文件 ...
上数据挖掘课的时候算过GINI指数,在寻找降维算法的时候突然看到了信息增益算法,突然发现信息增益算法和课上算的GINI指数很相似,于是就用在这次文本分类实验当中。总的来说信息增益算法是为了求特征t对于分类的贡献大小。贡献大则称信息增益大、贡献小信息增益小。文本分类自然是找那些对分类贡献大的词汇 ...
一:基础知识 1:个体信息量 -long2pi 2:平均信息量(熵) Info(D)=-Σi=1...n(pilog2pi) 比如我们将一个立方体A抛向空中,记落地时着地的面为f1,f1的取值为{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...
数据集如下: 基于信息增益的ID3决策树的原理这里不再赘述,读者如果不明白可参考西瓜书对这部分内容的讲解。 python实现代码如下: 绘制的决策树如下: ...
这是一个计算决策树中信息增益、信息增益比和GINI指标的例子。 相关阅读: Information Gainhttp://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm ...
ID3、C4.5和CART三种经典的决策树模型分别使用了信息增益、信息增益比和基尼指数作为选择最优的划分属性的准则来构建决策树。以分类树来说,构建决策树的过程就是从根节点(整个数据集)向下进行节点分裂(划分数据子集)的过程,每次划分需要让分裂后的每个子集内部尽可能包含同一类样本。信息增益和信息增益 ...