caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序 ...
caffe团队用imagenet图片进行训练,迭代 多万次,训练出来一个model。这个model将图片分为 类,应该是目前为止最好的图片分类model了。 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在 万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢 那就用caffe团队提供给我们的model吧。 因为训练好的model里面存放 ...
2016-01-17 17:57 67 46295 推荐指数:
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序 ...
1、caffemodel文件 文件名称为:bvlc_reference_caffenet.caffemodel,文件大小为230M左右,为了代码的统一,将这个caffemodel文件下载到caffe根目录下的 models/bvlc_reference_caffenet/ 文件夹下面。可以运行 ...
前言: 本文章记录了我将自己的数据集处理并训练的流程,帮助一些刚入门的学习者,也记录自己的成长,万事起于忽微,量变引起质变。 正文: 一、流程 1)准备数据集 2)数据转换为lmdb格式 3)计算均值并保存(非必需) 4)创建 ...
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测。 我们从mnist数据集的test集中随便找一张图片,用来进行实验。 最后输出 the class ...
因为毕设需要,我首先是用ffmpeg抽取某个宠物视频的关键帧,然后用caffe对这个关键帧中的物体进行分类。 1.抽取关键帧的命令: 2.用python编写脚本,利用在imagenet上训练的模型分类视频帧中的物体。 抽取得到的视频关键帧都存放在文件夹"/home ...
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可。 #include <caffe/caffe ...
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程。 一、准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org ...