DFT 离散傅里叶变换有定义如下 有离散信号$\underline{f}=\left( \underline{f}[0],\underline{f}[1],…,\underline{f}[N-1] \right)$,它的DFT是离散信号$\underline{\mathcal{F}f ...
线性系统的基本定义 线性系统的基本定义 线性系统将输入与输出映射起来,输出满足叠加性原则 It s a mapping from inputs to outputs satisfies the principle of superposition 下图为一个基本的线性系统 L v v Lv Lv L alpha v alpha Lv 结合上面两个性质,有 displaystyle L left ...
2016-01-16 23:08 0 2979 推荐指数:
DFT 离散傅里叶变换有定义如下 有离散信号$\underline{f}=\left( \underline{f}[0],\underline{f}[1],…,\underline{f}[N-1] \right)$,它的DFT是离散信号$\underline{\mathcal{F}f ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 分布傅里叶变换的定义 在傅里叶变换领域中,测试函数$\varphi$选择了速降函数(Schwartz Functions)。与之对应的分布$T$通常被称为缓增分布(Tempered ...
}\underline{f}[n] }$ 还记得傅里叶变换在零点处也有类似的式子 $\mathcal{F} ...
矩阵卷积,离散有限维线性时不变系统 与上一节课连续无限维线性时不变系统有相同的描述:当且仅当线性算符是用卷积表达的,该系统才是线性时不变系统(LTI system)。 $\underline{w} = Av = \underline{h}* \underline{v}$ 上述等式表达 ...
这节课主要讲傅里叶变换的计算,由于高维傅里叶变换有多个变量,多重积分,因此在计算时会有较大的困难。不过某些函数会有较为简捷的计算方式,下面来分析两类这样的函数。 可分离函数 有一类函数的高维傅里叶变换能通过计算一系列低维傅里叶变换来得到,这类函数被称为可分离函数。(There's ...
高维意味着函数中有多个变量,典型的高维傅里叶应用为图像处理。 一个二维图像的亮度(灰度)可以用$f(x_1,x_2)$来表示,以lena为例,图像平面作为$x_1,x_2$平面,灰度作为$z$轴,形成一个三维曲面 original ...
同步加载和执行JS的情况 在HTML页面的</body>表情之前添加的所有<script>标签,无论是直接嵌入JS代码还是引入外部js代码都是同步执行的,这里的同步执行指的是在加载好和执行完JS代码之前整个浏览器的界面都是阻塞的。 静态加载时 内嵌代码和引入js代码 ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 分布的导数(Derivative of a Distribution) 设有分布$T$,其导数为$T'$ $\begin{align*}<T',\varphi>&= \int_ ...