原文:如何解决机器学习中数据不平衡问题

作者:无影随想时间: 年 月。出处:https: zhaokv.com machine learning learning from imbalanced data.html声明:版权所有,转载请注明出处 这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问 ...

2016-01-05 09:57 0 29472 推荐指数:

查看详情

机器学习】如何解决数据不平衡问题

  在机器学习的实践,我们通常会遇到实际数据中正负样本比例不平衡的情况,也叫数据倾斜。对于数据倾斜的情况,如果选取的算法不合适,或者评价指标不合适,那么对于实际应用线上时效果往往会不尽人意,所以如何解决数据不平衡问题是实际生产中非常常见且重要的问题。 什么是类别不平衡问题 ...

Fri Mar 01 21:32:00 CST 2019 3 13665
机器学习数据不平衡问题

最近碰到一个问题,其中的阳性数据比阴性数据少很多,这样的数据集在进行机器学习的时候会使得学习到的模型更偏向于预测结果为阴性。查找了相关的一些文献,了解了一些解决这个问题的一些方法和技术。 首先,数据不平衡会造成怎样的问题呢。一般的学习器都有下面的两个假设:一个是使得学习器的准确率最高 ...

Tue Jun 16 17:15:00 CST 2015 0 2958
从重采样到数据合成:如何处理机器学习不平衡分类问题

从重采样到数据合成:如何处理机器学习不平衡分类问题? 转载自【机器之心】http://www.jiqizhixin.com/article/2499本文作者为来自 KPMG 的数据分析顾问 Upasana Mukherjee 如果你研究过一点机器学习数据科学,你肯定遇到过不平衡的类分布 ...

Mon May 01 00:29:00 CST 2017 0 1812
机器学习之类别不平衡问题 (1) —— 各种评估指标

机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 完整代码 在二分类问题中,通常假设正负类别相对均衡,然而实际应用类别不平衡问题,如100, 1000, 10000倍 ...

Tue Mar 13 02:47:00 CST 2018 0 4766
机器学习之类别不平衡问题 (3) —— 采样方法

机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 完整代码 前两篇主要谈类别不平衡问题的评估方法,重心放在各类评估指标以及ROC和PR曲线上,只有在明确了这些后 ...

Sun Jul 29 03:12:00 CST 2018 2 10974
机器学习-类别不平衡问题

引言:我们假设有这种情况,训练数据有反例998个,正例2个,模型是一个永远将新样本预测为反例的学习器,就能达到99.8%的精度,这样显然是不合理的。 类别不平衡:分类任务不同类别的训练样例数差别很大。   一般我们在训练模型时,基于样本分布均匀的假设。从线性分类器的角度 ...

Wed Aug 16 23:56:00 CST 2017 0 5314
机器学习如何处理不平衡数据(imbalanced data)?

  推荐一篇英文的博客: 8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset      1.不平衡数据集带来的影响   一个不平衡的两类数据集,使用准确率(accuracy)作为模型评价指标,最后 ...

Sat Jul 14 23:20:00 CST 2018 0 754
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM