绪论 最近做课题,需要分析短文本的标签,在短时间内学习了自然语言处理,社会标签推荐等非常时髦的技术。我们的需求非常类似于从大量短文本中获取关键词(融合社会标签和时间属性)进行用户画像。这一切的基础就是特征词提取技术了,本文主要围绕关键词提取这个主题进行介绍(英文)。 不同版本 ...
在文本分类中,需要先对文本分词,原始的文本中可能由几十万个中文词条组成,维度非常高。另外,为了提高文本分类的准确性和效率,一般先剔除决策意义不大的词语,这就是特征词提取的目的。本文将简单介绍几种文本特征词提取算法。 信息增益 IG 对于一个系统,其信息熵为 H S sum i C P ilog P i . C 表示类别个数, P i 表示第 i 的类别的概率。某个特征 F ,有该特征和没有该特征, ...
2015-12-04 02:02 0 6807 推荐指数:
绪论 最近做课题,需要分析短文本的标签,在短时间内学习了自然语言处理,社会标签推荐等非常时髦的技术。我们的需求非常类似于从大量短文本中获取关键词(融合社会标签和时间属性)进行用户画像。这一切的基础就是特征词提取技术了,本文主要围绕关键词提取这个主题进行介绍(英文)。 不同版本 ...
的词语可以配以权重。 3.TF-IWF文档关键词自动提取算法 针对现有TF-IWF的领域文档关键词快 ...
法一:Bag-of-words 词袋模型 文本特征提取有两个非常重要的模型: 词集模型:单词构成的集合,集合中每个元素都只有一个,也即词集中的每个单词都只有一个 词袋模型:如果一个单词在文档中出现不止一次,并统计其出现的次数(频数) 两者本质上的区别,词袋是在词集的基础上 ...
1. 词袋模型 (Bag of Words, BOW) 文本分析是机器学习算法的一个主要应用领域。然而,原始数据的这些符号序列不能直接提供给算法进行训练,因为大多数算法期望的是固定大小的数字特征向量,而不是可变长度的原始文本。 为了解决这个问题,scikit-learn提供了从文本内容中提取 ...
文本深度特征提取 注:本文内容摘自《深度学习算法实践》 为何要研究文本深度特征? ——因为文本深度特征无论对于文本分类还是文本预测,都是非常重要的。 文本特征的提取说白了就是将自然语言理解的问题转化成机器学习的问题。第一步肯定是找一种合适的方法,把语言表达数学化,即用可量化 ...
1、引言 关于文本的提取有很多方法,本文主要探索下sklearn官方的文本特征提取功能。 2、文本特征提取 文本分析是机器学习算法的主要应用领域。 然而,原始数据,符号文字序列不能直接传递给算法,因为它们大多数要求具有固定长度的数字矩阵特征向量,而不是具有可变长度的原始文本 ...
目录 1、介绍 2、LoG原理 3、数学原理 4、模板性质 1、介绍 LoG(DoG是一阶边缘提取)是二阶拉普拉斯-高斯边缘提取算法,先高斯滤波然后拉普拉斯边缘提取。 Laplace算子对通过图像进行操作实现边缘检测的时,对离散点和噪声比较敏感。于是,首先对图像进行高斯卷积 ...
SIFT特征点相对于ORB计算速度较慢,在没有GPU加速情况下,无法满足视觉里程计的实时性要求,或者无法运行在手机平台上,但是效果更好,精度更高。在应用时可以择优选取,了解其本质原理的动机是为了自己使用时,可以对其进行修改,针对自己的应用场景优化算法。 有足够的时间,可以去看D. Lowe的论文 ...