3.1 线性不可以分 我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面 ...
. 线性不可以分 我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能 保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。 看下面两张图: 可以看到一个离群点 可能是噪声 可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感。再有甚者,如 ...
2015-11-26 11:07 0 2257 推荐指数:
3.1 线性不可以分 我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面 ...
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 ...
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------【无论用哪条直线都无法将女生情绪正确分类】 SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原成二维: 刚利用“开心”“不开心”的重量差实现将二维数据变成三维 ...
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为。 输入 表示实例的特征向量,对应于输入空间的点; 输出 表示示例的类别。 线性可分支持向量机的定义: 通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数 ...
拉格朗日乘子法 - KKT条件 - 对偶问题 支持向量机 (一): 线性可分类 svm 支持向量机 (二): 软间隔 svm 与 核函数 支持向量机 (三): 优化方法与支持向量回归 支持向量机(support vector machine, 以下简称 svm)是机器学习里的重要方法 ...
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 之前介绍了SVM ...
http://blog.csdn.net/u013300875/article/details/44081067 很多机器学习分类算法,比如支持向量机(svm),假设数据是要线性可分。 如果数据不是线性可分的,我们就必须要采用一些特殊的方法,比如svm的核技巧把数据转换到更高的维度上,在那个高 ...
一.简介 前两节分别实现了硬间隔支持向量机与软间隔支持向量机,它们本质上都是线性分类器,只是软间隔对“异常点”更加宽容,它们对形如如下的螺旋数据都没法进行良好分类,因为没法找到一个直线(超平面)能将其分隔开,必须使用曲线(超曲面)才能将其分隔,而核技巧便是处理这类问题的一种常用 ...