原文:C4.5算法

一,C . 算法是基于ID 算法的改进 优点 对连续的数据也能处理 可以在决策树构造过程中进行剪枝,因为某些具有很少元素的结点可能会使构造的决策树过拟合 Overfitting ,如果不考虑这些结点可能会更好 能够对不完整数据进行处理。 用信息增益率来进行属性选择的度量 二,算法流程 三,属性选择度量 和ID 对比 属性选择度量又称分裂规则,因为它们决定给定节点上的元组如何分裂。属性选择度量提供了 ...

2015-11-19 17:02 0 1793 推荐指数:

查看详情

C4.5算法总结

C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类 ...

Thu Jun 23 23:04:00 CST 2016 0 11225
C4.5算法学习

C4.5属于决策树算法的分类树决策树更是常见的机器学习方法,可以帮助我们解决分类与回归两类问题。以决策树作为起点的原因很简单,因为它非常符合我们人类处理问题的方法,而且逻辑清晰,可解释性好。从婴儿到长者,我们每天都使用无数次! 决策树的总体流程; 总体流程 分而治之 ...

Sun Sep 08 19:02:00 CST 2019 0 363
C4.5算法的学习笔记

有日子没写博客了,这些天忙着一些杂七杂八的事情,直到某天,老师喊我好好把数据挖掘的算法搞一搞!于是便由再次埋头看起算法来!说起数据挖掘的算法,我想首先不得的不提起的就是大名鼎鼎的由决策树算法演化而来的C4.5算法,毕竟这是当年各个“鼻祖”在数据挖掘大会投票结果最高的一个算法 ...

Tue Mar 18 08:04:00 CST 2014 2 3306
决策树-C4.5算法(三)

在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进:  1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,公式为GainRatio(A);   2) 在树构造 ...

Sun Aug 21 05:10:00 CST 2016 0 3272
决策树算法原理(ID3,C4.5)

决策树算法原理(CART分类树) CART回归树 决策树的剪枝   决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林。 1. 决策树ID3算法的信息论基础   1970年昆兰找到了用信息论中的熵来度量决策树的决策选择过程,昆兰把这个算法叫做 ...

Tue Jan 15 00:19:00 CST 2019 0 3868
Python实现决策树C4.5算法

 为什么要改进成C4.5算法 原理   C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。   之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小 ...

Sat Apr 22 04:01:00 CST 2017 2 7749
数据挖掘十大算法之—C4.5

C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类 ...

Thu Jul 26 06:47:00 CST 2012 3 39452
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM