「摘自刘二根和谢霖铨主编的《线性代数》」 二次型及其标准型 正定二次型,正定矩阵 ...
现在就来研究将空间分割为不变子空间的方法,最困难的是我们还不知道从哪里着手。你可能想到从循环子空间出发,一块一块地进行分割,但这个方案的存在性和唯一性都不能解决。不变子空间分割不仅要求每个子空间 V 是不变的,还隐含要求 V 之外元素的像不落在 V 中,这一条就导致从局部开始分割的方案是行不通的。另外,这种方法也无法保障分割的唯一性,因为分割过程依赖每个子空间的选取。 . 化零多项式 看来还是得 ...
2015-11-18 11:14 1 3529 推荐指数:
「摘自刘二根和谢霖铨主编的《线性代数》」 二次型及其标准型 正定二次型,正定矩阵 ...
将学习到什么 就算两个矩阵有相同的特征多项式,它们也有可能不相似,那么如何判断两个矩阵是相似的?答案是它们有一样的 Jordan 标准型. Jordan 标准型定理 这节目的:证明**每个复矩阵都与一个本质上唯一的 Jordan 矩阵相似**. 分三步证明这个结论。其中前两步 ...
将学习到什么 练习一下如何把一个矩阵化为 Jordan 标准型. 将矩阵化为 Jordan 标准型需要三步: 第一步 求出矩阵 \(A \in M_n\) 全部的特征值 \(\lambda_1,\cdots,\lambda_t\), 假设有 \(t\) 个不同的特征值 ...
将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用. 实 Jordan 标准型 假设 \(A \in M_n(\mathbb{R})\), 所以任何非实的特征值必定成对共轭出现 ...
Jordan标准型矩阵的定义很简单,矩阵比较多,不好打,略过。 Jordan标准型与最小多项式有密切关系。 定理1 若矩阵\(J\)为矩阵\(A\)的若当标准型矩阵,\(\lambda\)是任意数字,则对一切正整数\(n\),有 \(Rank(A-\lambda I)^k = Rank(J- ...
也可以用特征值的方式求,重根如果没有重述个无关的向量,重根形成Jordan块。(几何重树和代数形式) ...
一.二次型的概念和变换 1.二次型 二次型,顾名思义,是用于研究二次的方程的,这类方程我们在解析几何中一定见过,如平面空间中的圆锥曲线方程等。这种类型的方程可以写成矩阵的形式,如下: 为了研究方便,我们经常将这里的x和y写成x1和x2 ...
1. 正规变换 1.1 伴随变换 在上一篇的最后我们看到,满足一定内积性质的线性变换可以有很好的不变子空间分割,现在对更一般的形式进行讨论。设内积空间中有\(V=W\oplus W^{\perp}\),且\(W\)是线性变换\(\mathscr{A}\)的不变子空间,任取\(\alpha ...