,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改 ...
过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上。出现over fitting的原因是多方面的: 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归 Polynomial regression ,左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于 ...
2015-11-14 15:15 0 7684 推荐指数:
,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改 ...
我们在使用线性回归和逻辑斯特回归的时候,高次幂的多项式项可能造成过拟合的问题。而我们使用过拟合这一方法来改善或者减少这一问题。 我们所要做的就是使θ尽可能接近0,那么对于高阶项对于hθ(x)的影响也会尽量小,几乎没有。这样就预防了过拟合。 正则化的线性回归模型 是正则项,λ是正则化 ...
正则化(Regularization)是机器学习中抑制过拟合问题的常用算法,常用的正则化方法是在损失函数(Cost Function)中添加一个系数的\(l1 - norm\)或\(l2 - norm\)项,用来抑制过大的模型参数,从而缓解过拟合现象。 \(l1 - norm\)的正则项还具 ...
参考: http://www.cnblogs.com/maybe2030/p/9231231.html https://blog.csdn.net/wsj998689aa/article/deta ...
警告:本文为小白入门学习笔记 在机器学习的过程中我们常常会遇到过拟合和欠拟合的现象,就如西瓜书中一个例子: 如果训练样本是带有锯齿的树叶,过拟合会认为树叶一定要带有锯齿,否则就不是树叶。而欠拟合则认为只要是绿色的就是树叶,会把一棵数也误认为树叶。 过拟合:如果我们的数据集有很多的属性,假设 ...
线性回归例子 如果 \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}x\] 通过线性回归得到的曲线可能如下图 这种情况下,曲线对数据的拟合程度不好。这种情况称为“Underfit”,这种情况属于“High bias”(高 ...
1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。 如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化 ...
1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。 如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化 ...