一、前言 公司实用Hadoop构建数据仓库,期间不可避免的实用HiveSql,在Etl过程中,速度成了避无可避的问题。本人有过几个数据表关联跑1个小时的经历,你可能觉得无所谓,可是多次Etl就要多个小时,非常浪费时间,所以HiveSql优化不可避免。 注:本文只是从sql层面介绍一下日常需要 ...
前言: 最近发现hivesql的执行速度特别慢,前面我们已经说明了left和union的优化,下面咱们分析一下增加或者减少reduce的数量来提升hsql的速度。 参考:http: www.cnblogs.com liqiu p .html 分析: 上一篇博文已经说明了,需要 个map, 个reduce,执行的速度: 秒。详细记录参考:http: www.cnblogs.com liqiu p . ...
2015-10-14 17:25 0 9861 推荐指数:
一、前言 公司实用Hadoop构建数据仓库,期间不可避免的实用HiveSql,在Etl过程中,速度成了避无可避的问题。本人有过几个数据表关联跑1个小时的经历,你可能觉得无所谓,可是多次Etl就要多个小时,非常浪费时间,所以HiveSql优化不可避免。 注:本文只是从sql层面介绍一下日常需要 ...
背景 在刚使用hive的过程中,碰到过很多问题,任务经常需要运行7,8个小时甚至更久,在此记录一下这个过程中,我的一些收获 join长尾 背景 SQL在Join执行阶段会将Join Key相同 ...
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...
原文链接 http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算, 从这个观点来看,如果将map和reduce的数量设置 ...
hive中如何控制mapper的数量 参考文档:https://www.cnblogs.com/1130136248wlxk/articles/5352154.html 1. 决定map的数据的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小 ...
,TEZ和SPARK支持map和reduce端向量化执行。 2.hive.ignore.mapjoi ...