CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的。在感受野的基础上,1980年 ...
本文结合Deep learning的一个应用,Convolution Neural Network 进行一些基本应用,参考Lecun的Document . 进行部分拓展,与结果展示 in python 。 分为以下几部分: . Convolution 卷积 . Pooling 降采样过程 . CNN结构 . 跑实验 下面分别介绍。 PS:本篇blog为ese机器学习短期班参考资料 课程 ,本文只是 ...
2015-10-11 09:24 0 2215 推荐指数:
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的。在感受野的基础上,1980年 ...
Ref: 从LeNet-5看卷积神经网络CNNs 关于这篇论文的一些博文的QAC: 1. 基本原理 MLP(Multilayer Perceptron,多层感知器)是一种前向神经网络(如下图所示),相邻两层网络之间全连接。 sigmoid通常使用tanh函数和logistic函数 ...
之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了减少参数规模,加快训练速度,CNN应运而生。CNN就像辟邪剑谱一样,正常人练得很挫,一旦自宫后 ...
卷积神经网络一般用在图像处理、计算机视觉等领域。下面1-4节介绍了构造卷积神经网络基础知识,第5节介绍一些经典的卷积神经网络,7-9节介绍了三种CNN常见应用:目标检测、人脸识别、风格迁移。 1. 卷积计算 1.1 卷积运算 (Convolution): 如图,一个6×6的矩阵 ...
(一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的。 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域; 2.权值共享; 3.池化操作。 在卷积神经网络中,局部接 ...
Neural Network,CNN)可以做到。 1. 卷积神经网络构成 图 1:卷积神经网络 ...
前面Andrew Ng的讲义基本看完了。Andrew讲的真是通俗易懂,只是不过瘾啊,讲的太少了。趁着看完那章convolution and pooling, 自己又去翻了翻CNN的相关东西。 当时看讲义时,有一点是不太清楚的,就是讲义只讲了一次convolution和一次pooling ...
目录 Q1:CNN 中的全连接层为什么可以看作是使用卷积核遍历整个输入区域的卷积操作? Q2:1×1 的卷积核(filter)怎么理解? Q3:什么是感受野(Receptive field)? Q4:对含有全连接层的 CNN,输入图像的大小必须固定? Q5 ...