原文:Mahout实现基于用户的协同过滤算法

Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法。 基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐。 图片来源 程序中用到的数据都存在MySQL数据库中,计算结果也存在MySQL中的对应用户表中。 测试数据: , , , , , , . , , , , . , , , , , , . , , , , . , , , ...

2015-10-05 22:56 1 4915 推荐指数:

查看详情

基于用户协同过滤算法

下面讲解的链接 https://blog.csdn.net/shf1730797676/article/details/97100815 基本思路:当用户A需要个性化推荐的时候,可以先找到和他兴趣相似的用户群体G,然后把G中所包含的且A中没有的东西进行预测评估,最后根据预测评估值对用户A进行 ...

Mon Sep 09 23:56:00 CST 2019 0 374
基于用户协同过滤推荐算法原理和实现

在推荐系统众多方法中,基于用户协同过滤推荐算法是最早诞生的,原理也较为简单。该算法1992年提出并用于邮件过滤系统,两年后1994年被 GroupLens 用于新闻过滤。一直到2000年,该算法都是推荐系统领域最著名的算法。 本文简单介绍基于用户协同过滤算法思想 ...

Thu Apr 30 09:55:00 CST 2015 22 45255
基于用户的推荐协同过滤算法算法

协同过滤推荐算法是最重要的算法,它是基于协同过滤算法的物品分为基于用户的协作过滤算法。 本文介绍了基于用户协同过滤算法。简单的说,给用户u推荐。所以只要找出谁和u课前行为似用户。这与u較像的用户。把他们的行为推荐给用户u就可以。 所以基于用户的系统过滤算法包含两个步骤 ...

Mon Jun 29 18:06:00 CST 2015 0 3305
基于用户协同过滤推荐算法

使得我们的项目更加智能,更加具有市场竞争力。 目前常用的推荐算法有:协同过滤、矩阵分解、聚类、深度学习等 ...

Mon Jun 28 07:53:00 CST 2021 0 274
协同过滤算法介绍及算法实现

一、协同过滤算法简介   协同过滤算法是一种较为著名和常用的推荐算法,它基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐。也就是常见的“猜你喜欢”,和“购买了该商品的人也喜欢”等功能。它的主要实现由:   ●根据和你有共同喜好的人给你推荐 ...

Mon Oct 22 23:45:00 CST 2018 0 14855
Apache Mahout协同过滤原理与实践

Apache Mahout协同过滤原理与实践 读书时期,选课是令人怀念的,因为自由,学生可以挑选自己喜爱的课程和老师!然而,过程并不是很美好,“系统繁忙,稍后重试!”屡有发生,于是大伙开心地约定今夜不战不休。西门的七彩路,和网吧名一样,我们从门口路过,进的却是右旁的可媛 ...

Fri Aug 10 19:10:00 CST 2018 1 2997
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM