本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通 ...
最近对PCA主成分分析做了一定的了解,对PCA基础和简单的代码做了小小的总结 有很多博客都做了详细的介绍,这里也参考了这些大神的成果: http: blog.sina.com.cn s blog e c aob.html 这个博客opencv简单实现了PCA,对PCA关键技术做了详细的分析 http: blog.sina.com.cn s blog b b a hc o.html 这篇文章介绍了o ...
2015-09-11 13:39 0 3387 推荐指数:
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通 ...
python3 学习api使用 主成分分析方法实现降低维度 使用了网络上的数据集,我已经下载到了本地,可以去我的git上参考 git:https://github.com/linyi0604/MachineLearning 代码: ...
主成分分析原理与实现 主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从而可以大大节省空间和数据量。最近课上学到这个知识,感觉很有意思,就在网上找一些博客 ...
PCA(principle component analysis) 。主成分分析,主要是用来减少数据集 ...
关于PCA的详细说明,参见:http://blog.sina.com.cn/s/blog_61b8694b0101jg4f.html 在此,我把我所用的matlab实现代码列举在此,比较简洁,并附有详细的注释。 训练数据的PCA处理: function [ mu,sigma,coeff ...
原文地址:https://www.cnblogs.com/xinyuyang/p/11178676.html 主成分分析原理与实现 主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 n×m">n×mn×m的矩阵转换成 ...
1.背景 PCA(Principal Component Analysis),PAC的作用主要是减少数据集的维度,然后挑选出基本的特征。 PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值。什么叫方差最大的方向的特征值呢。就像下图 ...
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA、t-SNE的原理就说不过去了吧。跑通软件没什么了不起的,网上那么多教程,copy一下就会。关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题。 学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单。 PCA ...