1. 多项式环 1.1 基本定义和性质 多项式是数学中的重要概念,在分析和代数中都有广泛的应用,线性变换也非常依赖多项式的理论。虽然在不同场景下多项式描述的对象有较大差异,但它们却有着类似的代数结构,这里就从纯代数的角度讨论多项式的结构和性质。以下我会花较多口舌定义什么是多项式,这种看似 ...
. 因子分解 . 唯一分解环 环的直和分解将大环分解为小环,使得结构更加简单。从整数的算术基本定理得到启发,我们还可以从乘法分解的角度来研究环。要使这个定向研究得到有用的结论,还需对环作一些限制。既然我们关注是因子,乘法顺序就显得多余且碍事,所以要求环是可交换的。另外零因子的讨论也是没有意义的,故规定所有非零元素都是正则元。故我们只需讨论整环中元素的乘法分解,为简化描述,以下将忽略对零元素的讨论 ...
2015-09-10 00:25 0 2629 推荐指数:
1. 多项式环 1.1 基本定义和性质 多项式是数学中的重要概念,在分析和代数中都有广泛的应用,线性变换也非常依赖多项式的理论。虽然在不同场景下多项式描述的对象有较大差异,但它们却有着类似的代数结构,这里就从纯代数的角度讨论多项式的结构和性质。以下我会花较多口舌定义什么是多项式,这种看似 ...
的资料《线性代数入门》 1、环与多项式 一、准备:多项式 代数学中,多项式是一个重要而 ...
抽象代数不是为了抽象而抽象,它所研究的代数系统都有着广泛的实例原型。群论的学习中我们已经看到很多系统同时存在着两个运算,而且它们是相互关联的,这就迫使我们来研究这种代数系统的结构和特点。从另一方面看,运算之间的互相牵连也会导致单个运算的特殊性质,你将会在后面的讨论中看到这一点。 1. 环 ...
抽象代数基础扫盲 发现自己真的是对代数一无所知啊qwq。 本文没有什么实际性的内容,都是一些基本定义 代数的发展历程 算术(arithmetic) 算术是数学中最古老的部分,算术的最大特点是关注具体数字 初等代数(elementary algebra) 初等代数 ...
前言 如果Google一下“闭包”这个词,会发现网上关于闭包的文章已经不计其数,甚至很多人将闭包看做面试JavaScript程序员的必考题(虽然闭包和JavaScript没有什么必然联系)。既然如此 ...
2、多项式除法 一、多项式整除 多项式之间存在乘法,我们自然想要去考虑乘法的逆运算是怎样的。首先来介绍整除: 定义:对于$K[x]$上的多项式$f$、$g$,若有存在多项式$h$,使得 $f=hg$ 我们就称$g$整除$f$,记为$g | f$。这时也称$g$是$f$的因式($f ...
描述 对于多项式f(x) = ax3 + bx2 + cx + d 和给定的a, b, c, d, x,计算f(x)的值。 输入 输入仅一行,包含5个实数,分别是x,及参数a、b、c、d的值,每个数都是绝对值不超过100的双精度浮点数。数与数之间以一个空格分开。 输出 输出一个实数,即f ...
1. 代数系统 1.1 运算律 我们已经知道函数的概念,它表示集合间的一种映射关系。多数场景里,像和原像往往是同一个集合,这里就讨论这样的函数。一元函数\(f:A\mapsto A\)也被称为集合\(A\)上的变换,其中双射的变换也称为置换。一般如下式的多元函数,也被称为集合 ...