1、K-Means原理 K-Means算法的基本思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 如果用数据表达式表示,假设簇划分为(C1,C2,...Ck),则我们的目标是最小化平方误差E: \[E ...
Kmeans聚类算法 Kmeans聚类算法的基本原理 K means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 假设要把样本集分为k个类别,算法描述如下: 适当选择k个类的初始中心,最初一般为随机选取 在每次迭代中,对任意一个样 ...
2015-08-26 21:54 0 2067 推荐指数:
1、K-Means原理 K-Means算法的基本思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 如果用数据表达式表示,假设簇划分为(C1,C2,...Ck),则我们的目标是最小化平方误差E: \[E ...
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心 ...
”。 1.2 KMeans算法的实现原理 KMeans聚类算法实现的原理就是簇内数据相似性最高,不同簇类的数据 ...
实现文档聚类的总体思想: 将每个文档的关键词提取,形成一个关键词集合N; 将每个文档向量化,可以参看计算余弦相似度那一章; 给定K个聚类中心,使用Kmeans算法处理向量; 分析每个聚类中心的相关文档,可以得出最大的类或者最小的类等; 将已经分好词的文档提取关键词,统计 ...
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心 ...
最近在网上查看用MapReduce实现的Kmeans算法,例子是不错,http://blog.csdn.net/jshayzf/article/details/22739063 但注释太少了,而且参数太多,如果新手学习的话不太好理解。所以自己按照个人的理解写了一个简单的例子并添加了详细的注释 ...
一、聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。 聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是 多维空间中的一个点。 聚类分析以相似性 ...
主要参考 K-means 聚类算法及 python 代码实现 还有 《机器学习实战》 这本书,当然前面那个链接的也是参考这本书,懂原理,会用就行了。 1、概述 K-means 算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越 ...