之前发现了线性变换和线性映射对应矩阵的求法和找他们的相似形和相抵形,我们会发现,如果可以把一个线性变换对应的矩阵对角化,那么它比较便于我们进行一些运算,(比如乘方幂次,比如可以和多项式相结合),但是对角化有比较严苛的条件: 特征子空间的维数之和需要等于线性变换A所对应的空间V的维数n,也就是说 ...
一 引入 前面已经指出,一切n阶矩阵A可以分成许多相似类。今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形。当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似。因此,急需引入一种较为简单而且对于一般矩阵都可由相似变换得到。 当矩阵A能相似于某对角矩阵时,该对角矩阵就是A的一个Jordan形。而当矩阵A不能相似于对角矩阵时,它必然与一个非对角的Jordan形相似。 ...
2015-08-22 10:01 0 2201 推荐指数:
之前发现了线性变换和线性映射对应矩阵的求法和找他们的相似形和相抵形,我们会发现,如果可以把一个线性变换对应的矩阵对角化,那么它比较便于我们进行一些运算,(比如乘方幂次,比如可以和多项式相结合),但是对角化有比较严苛的条件: 特征子空间的维数之和需要等于线性变换A所对应的空间V的维数n,也就是说 ...
将学习到什么 就算两个矩阵有相同的特征多项式,它们也有可能不相似,那么如何判断两个矩阵是相似的?答案是它们有一样的 Jordan 标准型. Jordan 标准型定理 这节目的:证明**每个复矩阵都与一个本质上唯一的 Jordan 矩阵相似**. 分三步证明这个结论。其中前两步 ...
将学习到什么 练习一下如何把一个矩阵化为 Jordan 标准型. 将矩阵化为 Jordan 标准型需要三步: 第一步 求出矩阵 \(A \in M_n\) 全部的特征值 \(\lambda_1,\cdots,\lambda_t\), 假设有 \(t\) 个不同的特征值 ...
也可以用特征值的方式求,重根如果没有重述个无关的向量,重根形成Jordan块。(几何重树和代数形式) ...
Jordan标准型矩阵的定义很简单,矩阵比较多,不好打,略过。 Jordan标准型与最小多项式有密切关系。 定理1 若矩阵\(J\)为矩阵\(A\)的若当标准型矩阵,\(\lambda\)是任意数字,则对一切正整数\(n\),有 \(Rank(A-\lambda I)^k = Rank(J- ...
将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用. 实 Jordan 标准型 假设 \(A \in M_n(\mathbb{R})\), 所以任何非实的特征值必定成对共轭出现 ...
现在就来研究将空间分割为不变子空间的方法,最困难的是我们还不知道从哪里着手。你可能想到从循环子空间出发,一块一块地进行分割,但这个方案的存在性和唯一性都不能解决。不变子空间分割不仅要求每个子空间\ ...
关联:0 复习与引申、1 线性空间与线性变换、2 内积空间与等距变换 本章目的 对给定的矩阵,(在找不到相似对角阵的情况下)找一个最简单的矩阵与之相似。 对给定的线性空间上的线 ...