购物篮数据常常包含关于商品何时被顾客购买的时间信息,可以使用这种信息,将顾客在一段时间内的购物拼接成事务序列,这些事务通常基于时间或空间的先后次序。 问题描述 一般地,序列是元素(element)的有序列表。可以记做\(s = (e_1, e_2, \cdots, e_n)\),其中每个 ...
子图模式 频繁子图挖掘 frequent subgraph mining :在图的集合中发现一组公共子结构。 图和子图 图是一种用来表示实体集之间联系的数据结构。 子图,图 G V , E 是另一个图 G V, E 的子图,如果它的顶点集V 是V的子集,并且它的边集E 是E的子集,子图关系记做 G subseteq s G 。 支持度,给定图的集族 varsigma , 子图 g 的支持度定义为包 ...
2015-08-20 16:12 0 8996 推荐指数:
购物篮数据常常包含关于商品何时被顾客购买的时间信息,可以使用这种信息,将顾客在一段时间内的购物拼接成事务序列,这些事务通常基于时间或空间的先后次序。 问题描述 一般地,序列是元素(element)的有序列表。可以记做\(s = (e_1, e_2, \cdots, e_n)\),其中每个 ...
非频繁模式 非频繁模式,是一个项集或规则,其支持度小于阈值minsup. 绝大部分的频繁模式不是令人感兴趣的,但其中有些分析是有用的,特别是涉及到数据中的负相关时,如一起购买DVD的顾客多半不会购买VCR,反之亦然,这种负相关模式有助于识别竞争项(competing item),即可以相互 ...
许多商业企业运营中的大量数据,通常称为购物篮事务(market basket transaction)。表中每一行对应一个事务,包含一个唯一标识TID。 利用关联分析的方法可以发现联系如关联规则或频繁项集。 关联分析需要处理的关键问题: 从大型事务数据集中发现模式可能在计算上要付出很高 ...
规则产生 忽略那些前件和后件为空的规则,每个频繁k项集能够产生\(2(2^k-1)\)个关联规则。将频繁项集Y划分为两个非空子集X和Y-X,使得\(X \to Y-X\)能满足置信度阈值,就可以得到满足条件的规则。 在计算规则的置信度时并不需要再次扫描事务数据集,因为产生规则的频繁项集和它 ...
实验六、数据挖掘之关联分析 一、实验目的 1. 理解Apriori算法的基本原理 2. 理解FP增长算法的基本原理 3. 学会用python实现Apriori算法 4. 学会用python实现FP增长算法 二、实验工具 1. Anaconda 2. sklearn 3. ...
计算支持度而删除某些候选项集的方法。 减少比较次数。利用更高级得到数据结构或者存储候选项集或者压缩数据 ...
一.基本概念 我们来看上面的事务库,如同上表所示的二维数据集就是一个购物篮事务库。该事物库记录的是顾客购买商品的行为。这里的TID表示一次购买行为的编号,items表示顾客购买了哪些商品。 事务: 事务库中的每一条记录被称为一笔事务。在上表的购物篮事务中,每一笔事务都表示一次 ...
处理连续属性 挖掘连续属性可能揭示数据的内在联系,包含连续属性的关联规则通常称作量化关联规则(quantitative association rule)。 主要讨论三种对连续数据进行关联分析的方法 基于离散化的方法 基于统计学的方法 非离散化方法 基于离散化方法 离散 ...