原文:拟牛顿法 分析与推导

针对牛顿法中海塞矩阵的计算问题,拟牛顿法主要是使用一个海塞矩阵的近似矩阵来代替原来的还塞矩阵,通过这种方式来减少运算的复杂度。其主要过程是先推导出海塞矩阵需要满足的条件,即拟牛顿条件 也可以称为拟牛顿方程 。然后我们构造一个满足拟牛顿条件的近似矩阵来代替原来的海塞矩阵。 另外,在满足拟牛顿条件的基础上如何构造近似的海塞矩阵,这有很多种方法,比如:DFP算法,BFGS算法,L BFGS算法以及Br ...

2015-07-27 17:17 0 8854 推荐指数:

查看详情

牛顿牛顿

牛顿牛顿 牛顿(Newton method)和牛顿(quasi Newton method)是求解无约束最优化问题的常用方法,收敛速度快。牛顿是迭代算法,每一步需要求解海赛矩阵的逆矩阵,计算比较复杂。牛顿通过正定矩阵近似海赛矩阵的逆矩阵或海赛矩阵,简化了这一 ...

Tue Aug 27 03:42:00 CST 2019 0 1011
牛顿(Python实现)

牛顿(Python实现) 使用牛顿(BFGS和DFP),分别使用Armijo准则和Wolfe准则来求步长 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的极小值 运行结果 ...

Thu Dec 30 19:55:00 CST 2021 0 1161
牛顿牛顿、共轭梯度

牛顿 一: 最速下降法 下降法的迭代格式为xk+1=xk–αkdk">xk+1=xk–αkdk , 其中dk">dk为下降方向, 设gk=∇f(xk)≠0">gk=∇f(xk)≠0, 则下降 ...

Fri Apr 01 05:02:00 CST 2016 0 1867
机器学习笔记-----牛顿牛顿

提要:今天讲的牛顿牛顿是求解无约束问题最优化方法的常用方法。 一 牛顿 假设我们求下面函数的最小值: 假设f(x)具有连续的二阶的连续偏导数,假设第K次迭代值为xk的值,那么可将f(X)在xk附近进行二阶泰勒展开得到: 我们对上述公式求导可得: 假设其中可逆 ...

Sun Oct 30 00:09:00 CST 2016 1 9502
牛顿牛顿、阻尼牛顿、修正牛顿

牛顿的思想是利用目标函数的二次Taylor展开模型的极小点去逼近目标函数的极小点。 设f(x)二次连续可微,Hesse矩阵正定,在xk附近展开f 令等式取0,得牛顿迭代公式 ,即 当初始点距离最优解较远时,Gk不一定正定,迭代不一定收敛,因此引入了步长因子 ...

Mon Jun 11 22:45:00 CST 2018 0 4157
最优化算法【牛顿牛顿、BFGS算法】

一、牛顿 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...

Sat Aug 01 05:24:00 CST 2020 0 562
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM