前言 总结目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前 ...
深度神经网络 Deep Neural Networks, 简称DNN 是近年来机器学习领域中的研究热点,产生了广泛的应用。DNN具有深层结构 数千万参数需要学习,导致训练非常耗时。GPU有强大的计算能力,适合于加速深度神经网络训练。DNN的单机多GPU数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了数据并行技术加速DNN训练,提供公用算法简化实验过程。对微信语音识别应用,在 ...
2015-07-23 20:25 0 2364 推荐指数:
前言 总结目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前 ...
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep ...
深度神经网络(DNN) 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。 1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是 ...
本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt ...
CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别? DNN以神经网络为载体,重在深度,可以说是一个统称。RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm。CNN应该侧重空间映射,图像数据尤为贴合此场景。 DNN以神经网络 ...
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础。 回顾监督学习的一般性问题。假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, (x_m, y_m)\}$,其中$x$为输入向量,$y$为输出向量,利用这个训练样本 ...
训练时间 在mbp的i5的cpu上训练了3轮,花的时间如下 kaggle gpu telsa 对比gpu和cpu,时间相差了1,2个数量级 GeForce GTX 1080 在本地开发环境上的入门级显卡1080上,训练时间后和kaggle的环境相差不多。 Epoch=50 ...
线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系。由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型。比如,在广告CTR预估应用中,除了“标题长度、描述长度、位次、广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次 ...