原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方 ...
高斯牛顿法: Levenberg Marquardt方法: ...
2015-07-09 23:51 0 1922 推荐指数:
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方 ...
上一篇博客中介绍的高斯牛顿算法可能会有J'*J为奇异矩阵的情况,这时高斯牛顿法稳定性较差,可能导致算法不收敛。比如当系数都为7或更大的时候,算法无法给出正确的结果。 Levenberg-Marquardt法一定程度上修正了这个问题。 计算迭代系数deltaX公式如下: 当lambda很小 ...
参考资料: 1,《精通MATLAB最优化计算(第2版)》作者:龚纯 等 的 第9章 9.3 小节 L-M 法 2,《数值分析》 作者:Timothy Sauer 的 第4章 4.4节 非线性最小二乘的 例子 第一本书里头虽然有代码,然而有错误,修正了错误之处 ...
计算步骤如下: 下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a、b、c为待解算系数。 代码如下: 迭代结果,其中散点为带噪声数据, ...
基于qt creator开发环境下的高斯曲线拟合实现过程: 空气VOCs色谱图得到的一系列离散数据,色谱峰处符号高斯分布,故采用高斯函数对其进行曲线拟合。开发环境为qt creator,拟合算法选用Levenberg-Marquardt,结果与origin拟合结果一致。Matlab中具有强大 ...
共轭梯度法: About the code: A : the input A of Ax = b b : the input b of Ax = b x0 : the input guess of x x : the output x of Ax = b r ...
计算步骤如下: 图片来自《视觉slam十四讲》6.2.2节。 下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a、b、c为待解算系数。 代码如下: ...
求最优估计$x^{*}$,使得误差(残差)向量的$\epsilon=f(x^{*})-z$的平方和$S(x)=\epsilon^{T}\epsilon$最小,即求 \begin{equati ...