本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法。 CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3 ...
在看机器学习实战时候,到第三章的对决策树画图的时候,有一段递归函数怎么都看不懂,因为以后想选这个方向为自己的职业导向,抱着精看的态度,对这本树进行地毯式扫描,所以就没跳过,一直卡了一天多,才差不多搞懂,才对那个函数中的plotTree.xOff的取值,以及计算cntrPt的方法搞懂,相信也有人和我一样,希望能够相互交流。 先把代码贴在这里: 绘制出来的图形如下: 先导:这里说一下为什么说一个递归树 ...
2015-06-23 19:14 6 8080 推荐指数:
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法。 CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3 ...
,在这些机器根据数据集创建规则是,就是机器学习的过程。 二,相关知识 1 决策树算法 在 ...
1. 简介 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型 ...
决策树是一个函数,以属性值向量作为输入,返回一个“决策”。 如上图,我们输入一系列属性值(天气状况,湿度,有无风)后会得到一个要不要出去玩的一个决策。 从样例构建决策树 对于原始样例集,我们选取一个最好的属性将其分裂,这样我们会产生多个样例子集,同时我们会把该属性从属性集去掉,并且继续 ...
一.简介 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。 二.决策树的表示法 决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性 ...
(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一。 决策树 场景 ...
闲来无事最近复习了一下ID3决策树算法,并凭着理解用pandas实现了一遍。对pandas更熟悉的朋友可供参考(链接如下)。相比本篇博文,更简明清晰,更适合复习用。 https://github.com/DianeSoHungry ...
决策树(Decision Tree DT) 机器学习是从给定的训练数据集学的一个模型用于对新示例进行分类,对于决策树而言,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越高越好,这样可以避免多次无用的分类。有多种方法来衡量纯度,此处介绍信息熵和基尼系数两种 ...