一、GBDT的原理 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起 ...
Dijkstar算法是荷兰数学家迪克斯屈拉 or迪杰斯特拉 在 年发现的一个算法。是现有的几个求带权图中两个顶点之间最短通路的算法之一。算是一个相当经典的算法了。 迪克斯屈拉算法应用于无向连通简单带权图中,求出顶点a 与z 之间的最短通路的长度。我感觉其算法精髓就是:找到第一个与a 最靠近的顶点,然后找第二个,续行此法,直到找到的顶点是z 为止。该算法依赖于一系列的迭代。通过在每次迭代中添加一个顶 ...
2015-04-28 16:40 0 2211 推荐指数:
一、GBDT的原理 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起 ...
原帖地址:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是 ...
1.信噪比SNR(siginal-nose ratio):指一个电子设备或者电子系统中信号与噪声的比例。 2.脉冲编码调制(Pulse Code Modulation)、脉冲位置调制(pulse p ...
PCA(Principal Component Analysis)主成分分析法的数学原理推导1、主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥;可视化等2、主成分分析法的数学原理 ...
一文读懂PCA算法的数学原理 来源:算法数学俱乐部,算法与数学之美,编辑:nhyilin PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高 ...
//2019.08.17 #支撑向量机SVM(Support Vector Machine)1、支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的。 2、支撑向量机 ...
模拟上帝之手的对抗博弈——GAN背后的数学原理 简介 深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度。从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式模型。判别式模型通常是将高维度的可感知的输入信号映射到类别标签。训练判别式模型 ...
文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。 当然我并不打算把文章写成纯数 ...