原文:python 之 决策树分类算法

发现帮助新手入门机器学习的一篇好文,首先感谢博主 :用Python开始机器学习 :决策树分类算法 J. Ross Quinlan在 提出将信息熵的概念引入决策树的构建,这就是鼎鼎大名的ID 算法。后续的C . , C . , CART等都是该方法的改进。 熵就是 无序,混乱 的程度。刚接触这个概念可能会有些迷惑。想快速了解如何用信息熵增益划分属性,可以参考这位兄弟的文章:http: blog.cs ...

2015-04-23 10:06 0 5670 推荐指数:

查看详情

决策树分类算法

数据挖掘系列(6)决策树分类算法 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法分类模型选择和结果评价。总共7篇,欢迎关注和交流。   这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后 ...

Wed Aug 21 01:15:00 CST 2013 0 3597
决策树分类算法

决策树算法是一种归纳分类算法,它通过对 训练集的学习,挖掘出有用的 规则,用于对 新集进行 预测。在其生成过程中,分割时属性选择度量指标是关键。通过属性选择度量,选择出最好的将样本分类的属性。 å³ç­æ åç±»ç®æ³æ¦è¿°" width ...

Wed Oct 23 17:12:00 CST 2019 0 1537
决策树与随机森林分类算法Python实现)

一、原理: 决策树:能够利用一些决策结点,使数据根据决策属性进行路径选择,达到分类的目的。 一般决策树常用于DFS配合剪枝,被用于处理一些单一算法问题,但也能进行分类 。 也就是通过每一个结点的决策进行分类,那么关于如何设置这些结点的决策方式: 熵:描述一个集合内元素混乱程度的因素。 熵 ...

Sun Feb 23 18:00:00 CST 2020 0 2488
Python机器学习(1)——决策树分类算法

1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不过对于一些特殊的逻辑分类会有困难。典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题。 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题。因此如何构建一棵好的决策树是研究的重点 ...

Wed Aug 29 21:16:00 CST 2018 0 6733
python机器学习(四)分类算法-决策树

一、决策树的原理 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 。 二、决策树的现实案例 相亲 ...

Wed May 20 19:44:00 CST 2020 0 841
决策树分类算法python代码实现案例

决策树分类算法 1、概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用。 2、算法思想 通俗来说,决策树分类的思想类似于找对象。现想象 ...

Fri Jul 14 19:04:00 CST 2017 0 14047
决策树算法python

决策树 优点: - 计算复杂度不高,易于理解和解释,甚至比线性回归更直观; - 与人类做决策思考的思维习惯契合; - 模型可以通过的形式进行可视化展示; - 可以直接处理非数值型数据,不需要进行哑变量的转化,甚至可以直接处理含缺失值的数据; - 可以处理不相关特征数据 ...

Fri Apr 10 23:35:00 CST 2020 0 1270
决策树(三)分类算法小结

引言   本文主要是对分类决策树的一个总结。在分类问题中,决策树可以被看做是if-then规则的结合,也可以认为是在特定特征空间与类空间上的条件概率分布。决策树学习主要分为三个步骤:特征选择、决策树的生成与剪枝操作。本文简单总结ID3和C4.5算法,之后是决策树的修剪。 ID3算法 ...

Thu Sep 13 07:31:00 CST 2018 0 2091
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM