1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为,在参数确定的情况下,求解条件概率。通俗的解释为在给定特征后预测结果出现的概率。 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取 ...
高斯判别分析 GDA 简介 首先,高斯判别分析的作用也是用于分类。对于两类样本,其服从伯努利分布,而对每个类中的样本,假定都服从高斯分布,则有: y sim Bernouli phi x y sim N mu , Sigma x y sim N mu , Sigma 这样,根据训练样本,估计出先验概率以及高斯分布的均值和协方差矩阵 注意这里两类内部高斯分布的协方差矩阵相同 ,即可通过如下贝叶斯公式 ...
2015-04-14 17:07 15 7790 推荐指数:
1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为,在参数确定的情况下,求解条件概率。通俗的解释为在给定特征后预测结果出现的概率。 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取 ...
algorithm)、高斯判别分析(Gaussian DiscriminantAnalysis,GDA)、朴素贝叶 ...
前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理。谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较。这这篇博客中我们就来谈谈LDA模型。由于水平有限,积累还不够,有不足之处还望指点。下面就进入正题吧。 为什么要用LDA ...
前面我们简要说明了贝叶斯学习的内容。由公式可以看出来,我们假定已经知道了似然概率的密度函数的信息,才能进行后验概率的预测。但有的时候,这些信息可能是不方便求出来的。因此,密度函数自身的估计问题成为了一个必须考虑的问题。 第一种思考的方法是跳出估计密度函数的问题,直接对样本集使用线性回归 ...
之前简要地介绍了一下线性判别函数的的基本性质,接下来我们进行更加详细的讨论。 文中大部分公式和图表来自 MLPP 和 PRML 我们将样本的分布用多元正态分布来近似,为了更加了解这个表达式的含义,我们对协方差矩阵做特征值分解,即Σ = UΛUT 然后将协方差矩阵的逆用同样方法分解 ...
1. LDA描述 线性判别分析(Linear Discriminant Analysis,LDA)是一种有监督学习算法,同时经常被用来对数据进行降维,它是Ronald Disher在1936年发明的,有些资料上也称位Fisher LDA.LDA是目前机器学习、数据挖掘领域中经典且热门的一种算法 ...
本讲内容 1. Generative learning algorithms(生成学习算法) 2. GDA(高斯判别分析) 3. Naive Bayes(朴素贝叶斯) 4. Laplace Smoothing(拉普拉斯平滑) 1.生成学习算法与判别学习算法 判别学习算法 ...
学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: ‘Submission failed: unexpected error: urlread: Peer certificate cannot be authenticated with given ...