决策树 决策树 参考文献 [1] 李航. 统计学习方法[M]. 北京:清华大学出版社,2012 决策树 前言:第一篇博客,最近看完决策树,想着归纳一下,也方便自己以后回顾。写的会比较全面一些,可能会有很多不太正确的地方,欢迎大家交流指正 : ) 决策树模型: 决策树模型 ...
数据海洋 营销预测模型的目标变量很多为一种状态或类型,如客户 买 还是 不买 客户选择上网方式为 宽带 还是 拨号 营销战通道是邮件 电话 还是网络。我们把这类问题统称为 分类 。决策树和逻辑回归都是解决 分类 问题的高手。用不同的算法解答同样的问题,自然引出了两者孰优孰劣的讨论,但迄今为止,仍然没有一个明确的结论。出现这种情况是意料之中的,因为两者的具体表现取决于数据状况和挖掘人员的水平。从算 ...
2015-04-05 18:14 0 1969 推荐指数:
决策树 决策树 参考文献 [1] 李航. 统计学习方法[M]. 北京:清华大学出版社,2012 决策树 前言:第一篇博客,最近看完决策树,想着归纳一下,也方便自己以后回顾。写的会比较全面一些,可能会有很多不太正确的地方,欢迎大家交流指正 : ) 决策树模型: 决策树模型 ...
1.基于树的模型比线性模型更好吗? 如果我可以使用逻辑回归解决分类问题和线性回归解决回归问题,为什么需要使用树模型? 我们很多人都有这个问题。 实际上,你可以使用任何算法。 这取决于你要解决的问题类型。 其中有一些关键因素,它们将帮助你决定使用哪种算法: 如果因变量和自变量之间的关系 ...
1. 决策树的定义 2. 决策树的分支:分类与回归 3. 随机森林软件隔支持向量机 4. 决策树处理缺失数据 5. 决策树的剪枝 1. 决策树的定义 决策树,顾名思义,就是用来决策的树,通常来说,决策树分为C4.5,CART等,其实他们都是一个东西,区别就是在 ...
分类决策树的概念和算法比较好理解,并且这方面的资料也很多。但是对于回归决策树的资料却比较少,西瓜书上也只是提了一下,并没有做深入的介绍,不知道是不是因为回归树用的比较少。实际上网上常见的房价预测的案例就是一个应用回归树的很好的案例,所以我觉得至少有必要把回归树的概念以及算法弄清楚 ...
决策树常用于分类问题,但是也能解决回归问题。 在回归问题中,决策树只能使用cart决策树,而cart决策树,既可以分类,也可以回归。 所以我们说的回归树就是指cart树。 为什么只能是cart树 1. 回想下id3,分裂后需要计算每个类别占总样本的比例,回归哪来的类别,c4.5也一样 ...
解决问题 实现基于特征范围的树状遍历的回归。 解决方案 通过寻找样本中最佳的特征以及特征值作为最佳分割点,构建一棵二叉树。选择最佳特征以及特征值的原理就是通过满足函数最小。其实选择的过程本质是对于训练样本的区间的分割,基于区间计算均值,最终区域的样本均值即为预测值 ...
回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵树的结果: 这棵树看起来与之前构造的分类树类似。主要 ...
决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本。前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的。因此用这个决策树来对训练样本进行分类的话,你会发现对于训练样本而言,这个树表现堪称完美,它可以100%完美正确 ...