1 离群点和离群点分析 1.2 离群点的类型 a.全局离群点 显著偏离数据集中的其余对象,最简单的一类离群点。 检测方法:找到一个合适 ...
下图摘自:http: blog. .com qianshch blog static 主要的聚类方法可以划分为以下几类: 划分方法 层次方法 基于密度的方法 基于网格的方法 聚类是典型的无监督学习。 wiki: 数据聚类算法可以分为结构性或者分散性。结构性算法利用以前成功使用过的聚类器进行分类,而分散型算法则是一次确定所有分类。结构性算法可以从上至下或者从下至上双向进行计算。从下至上算法从每个对 ...
2015-03-25 12:13 0 5179 推荐指数:
1 离群点和离群点分析 1.2 离群点的类型 a.全局离群点 显著偏离数据集中的其余对象,最简单的一类离群点。 检测方法:找到一个合适 ...
第4章 分类:基本概念、决策树与模型评估 分类任务就是确定对象属于哪个预定义的目标类。分类问题是一个普遍存在的问题,有许多不同的应用。例如:根据电子邮件的标题和内容检查出垃圾邮件,根据核磁共振扫描的结果区分肿瘤是恶性的还是良性的,根据星系的形状对它们进行分析。 本章介绍分类的基本概念 ...
许多商业企业运营中的大量数据,通常称为购物篮事务(market basket transaction)。表中每一行对应一个事务,包含一个唯一标识TID。 利用关联分析的方法可以发现联系如关联规则或频繁项集。 关联分析需要处理的关键问题: 从大型事务数据集中发现模式可能在计算上要付出很高 ...
2-1数据对象与属性类型 数据集由数据对象组成。一个数据对象代表一个实体。例如,在销售数据库中,对象可以是顾客、商品或销售•,在医疗数据库中,对象可以是患者;在大学的数据库中,对象可以是学生、教授和课程。通常,数据对象用属性描述。数据对象又称样本、实例、数据点或对象。如果数据对象存放在数据库中 ...
聚类分析 一、概念 聚类分析是按照个体的特征将他们分类,让同一个类别内的个体之间具有较高的相似度,不同类别之间具有较大的差异性 聚类分析属于无监督学习 聚类对象可以分为Q型聚类和R型聚类 Q型聚类:样本/记录聚类 以距离为相似性指标 (欧氏距离、欧氏平方距离 ...
一.基本概念 我们来看上面的事务库,如同上表所示的二维数据集就是一个购物篮事务库。该事物库记录的是顾客购买商品的行为。这里的TID表示一次购买行为的编号,items表示顾客购买了哪些商品。 事务: 事务库中的每一条记录被称为一笔事务。在上表的购物篮事务中,每一笔事务都表示一次 ...
问题:数据总量爆炸式增加,如何从中提取真正有价值的信息,产生了新的领域(DM)。几个名词: 1)Data Mining:数据挖掘 2)Knowledge Discovery:知识发现 3)Machine Learning:机器学习(机器学习是数据挖掘的一个重要工具 ...
文本分析,在数据挖掘,甚至是深度学习中很重要的分支研究领域。如下运用R语言,通过采用文本相似度算法Jaro-Winkler Distance,能实现: 在题库中查找出相似度高的题并输出自动聚类的结果,从而提炼出练习重点,提高阅读效率。 ## 寻找练习重点 library ...