Storm主要的应用场景就是流式数据处理,例如实时推荐系统,实时监控系统等。 storm中的相关概念 在storm中,分布式的计算结构指的是一个topology(拓扑),一个topology由流式数据,spouts(流生产者),以及bolts(具体操作者)组成。Storm ...
在这里,将会提到storm的七种grouping策略,并且编码逐一实现。 首先,需要一个集群 希望尽量模仿真实环境,故就不用本地模式了 。详细的安装方法大家可以查看本人的另外一篇博文:storm集群和zookeeper集群的部署过程。 OK。现在有三个节点。一个作为nimbus,两个作为supervisor。到这里先介绍一下storm逻辑上有两个component,一个是Spout,另一个是Bo ...
2015-02-24 22:34 2 6778 推荐指数:
Storm主要的应用场景就是流式数据处理,例如实时推荐系统,实时监控系统等。 storm中的相关概念 在storm中,分布式的计算结构指的是一个topology(拓扑),一个topology由流式数据,spouts(流生产者),以及bolts(具体操作者)组成。Storm ...
Storm Grouping: Shuffle Grouping :随机分组,尽量均匀分布到下游Bolt中 将流分组定义为混排。这种混排分组意味着来自Spout的输入将混排,或随机分发给此Bolt中的任务。shuffle grouping对各个task的tuple分配的比较均匀 ...
在Storm中, 开发者可以为上游spout/bolt发射出的tuples指定下游bolt的哪个/哪些task(s)来处理该tuples。这种指定在storm中叫做对stream的分组,即stream grouping,分组方式主要有以下7种 Shuffle Grouping 或 None ...
Shuffle Grouping: 随机分组, 随机派发stream里面的tuple, 保证bolt中的每个任务接收到的tuple数目相同.(它能实现较好的负载均衡) Fields Grouping:按字段分组, 比如按userid来分组, 具有同样userid ...
概念,见博客 Storm概念学习系列之stream grouping(流分组) Storm的stream grouping的Shuffle Grouping 它是随机分组,随机派发stream里面的tuple,保证 ...
一、前述 Storm由数源泉spout到bolt时,可以选择分组策略,实现对spout发出的数据的分发。对多个并行度的时候有用。 二、具体原理 1. Shuffle Grouping 随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同 ...
简单聊聊Storm的流分组策略 首先我要强调的是,Storm的分组策略对结果有着直接的影响,不同的分组的结果一定是不一样的。其次,不同的分组策略对资源的利用也是有着非常大的不同,本文主要讲一讲localOrShuffle这个分组对资源利用的重大改善。最后,不同的分组对项目的逻辑也起着至关重要 ...
目录 storm的分组策略 根据实例来分析分组策略 common配置: Shuffle grouping shuffle grouping的实例代码 ShuffleGrouping 样例分析 Fields ...