中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化 ...
对于上图的二值化图像,要去除左下角和右上角的噪点,方法:使用opencv去掉黑色面积较小的连通域。代码 分析:对于上图来说连通域共有:这么七个,我们的目标是去除 号和 号连通域,程序中语句 tmparea fabs cvContourArea contour 可以得到当前连通域的面积,当此面积小于阈值时对其填充为白色。rect cvBoundingRect contour, 得到的是框住连通域的 ...
2015-01-30 02:56 0 4046 推荐指数:
中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化 ...
一、前言 二值图像,顾名思义就是图像的亮度值只有两个状态:黑(0)和白(255)。二值图像在图像分析与识别中有着举足轻重的地位,因为其模式简单,对像素在空间上的关系有着极强的表现力。在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化 ...
一、前言 二值图像,顾名思义就是图像的亮度值只有两个状态:黑(0)和白(255)。二值图像在图像分析与识别中有着举足轻重的地位,因为其模式简单,对像素在空间上的关系有着极强的表现力。在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化 ...
一幅图像二值化处理后往往包含多个区域,需要通过标记把它们分别提取出来。标记分割后图像中各区域的简单而有效的方法是检查各像素与其相邻像素的连通性。 在二值图像中,背景区像素的值为0,目标区域的像素值为1。假设对一幅图像从左向右,从上向下进行扫描,要标记当前正被扫描的像素需要检查它与在它之前被扫描 ...
文章概要 非常感谢☆Ronny丶博主在其博文《图像分析:二值图像连通域标记》中对二值图像连通域的介绍和算法阐述,让我这个毫无数据结构算法底子的小白能够理解和复现代码。本文的目的是基于我自己的理解,对该博文中Two-Pass算法的一些优化和补充,同时也希望帮助更多像我一样的人较快地掌握 ...
连通域反选 在使用Opencv的findcontours函数寻找连通域轮廓时,可能需要使用到类似PS中的选区反选功能。 以下对这一部分进行说明: 在findcontours函数中的mode参数中选择CV_RETR_CCOMP两级轮廓查找 ...
原文地址 文章2 原文补充: ...
OpenCV支持大量的轮廓、边缘、边界的相关函数,相应的函数有moments、HuMoments、findContours、drawContours、approxPolyDP、arcLength、boundingRect、contourArea、convexHull、fitEllipse ...