俄亥俄州立 算法讲义(非常详细) http://web.cse.ohio-state.edu/~sun.397/courses/au2018/FPM-basic-osu-1114.pdf minhash性质 任意k个元素中有一个是排列Pi下 ...
原始链接 http: www.jiahenglu.net NSFC LSH.html LSH Location Sensitive Hash ,即位置敏感哈希函数。与一般哈希函数不同的是位置敏感性,也就是散列前的类似点经过哈希之后,也可以在一定程度上类似,而且具有一定的概率保证。 形式化定义: 对于随意q,p属于S,若从集合S到U的函数族H h ,h ...hn 对距离函数D , ,如欧式距离 ...
2015-01-29 21:23 0 4082 推荐指数:
俄亥俄州立 算法讲义(非常详细) http://web.cse.ohio-state.edu/~sun.397/courses/au2018/FPM-basic-osu-1114.pdf minhash性质 任意k个元素中有一个是排列Pi下 ...
马克·吐温曾经说过,所谓经典小说,就是指很多人希望读过,但很少人真正花时间去读的小说。这种说法同样适用于“经典”的计算机书籍。 最近一直在看LSH,不过由于matlab基础比较差,一直没搞懂。最近看的论文里几乎都是用simHash来实现LSH,从而进行ANN。 有空看看基于滑动窗口 ...
最开始仿真和精度测试,基于 matlab 完成的。 Demo_MakeTable.m (生成 Hash 表) %======================================= ...
给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合。那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2)。此外,假如,N个集合中只有少数几对集合相似,绝大多数集合都不相似,该方法在两两比较过程中“浪费了计算时间”。所以,如果能找到一种算法,将大体上相 ...
一.算法实现 基于p-stable分布,并以‘哈希技术分类’中的分层法为使用方法,就产生了E2LSH算法。 E2LSH中的哈希函数定义如下: 其中,v为d维原始数据,a为随机变量,由正态分布产生; w为宽度值,因为a∙v+b得到的是一个实数 ...
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据 ...
1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低。 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后 ...
在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理。这里我们再来看看另外一种常见的聚类算法BIRCH。BIRCH算法比较适合于数据量大,类别数K也比较多的情况。它运行速度很快,只需要单遍扫描数据集就能进行聚类,当然需要用到一些技巧,下面 ...