学习理论: 偏差方差权衡(Bias/variance tradeoff) 训练误差和一般误差(Training error & generation error) 经验风险最小化(Empiried risk minization) 联合界引理和Hoeffding不等式 ...
写在前面:机器学习的目标是从训练集中得到一个模型,使之能对测试集进行分类,这里,训练集和测试集都是分布D的样本。而我们会设定一个训练误差来表示测试集的拟合程度 训练误差 ,虽然训练误差具有一定的参考价值。但实际上,我们并不关心对训练集合的预测有多么准确。我们更关心的是对于我们之前没有见过的一个全新的测试集进行测试时,如果利用这个模型来判断,会表现出怎么样的性能,即一般误差。因此,这也要求我们的模 ...
2015-01-21 15:24 0 3909 推荐指数:
学习理论: 偏差方差权衡(Bias/variance tradeoff) 训练误差和一般误差(Training error & generation error) 经验风险最小化(Empiried risk minization) 联合界引理和Hoeffding不等式 ...
参考链接:http://www.360doc.com/content/17/0623/13/10408243_665793832.shtml 1、损失函数 最简单的理解就是,给定一个实例,训练 ...
原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化风险 结构化风险 = 经验风险 + 置信风险 经验风险 = 分类器在给定样本上的误差 ...
本讲内容 1. Bias/Variance trade-off (偏差-方差权衡) 2. Empirical risk minimization(ERM) (经验风险最小化) 3. Union Bound/ Hoeffding inequality (联合界/霍夫丁不等式) 4. ...
本节知识点: 贝叶斯统计及规范化 在线学习 如何使用机器学习算法解决具体问题:设定诊断方法,迅速发现问题 贝叶斯统计及规范化(防止过拟合的方法) 就是要找更好的估计方法来减少过度拟合情况的发生。 回顾一下,线性回归中使用的估计方法是最小 ...
之前讲了监督学习和无监督学习,今天主要讲“强化学习”。 马尔科夫决策过程;Markov Decision Process(MDP) 价值函数;value function ...
Manjaro作为Arch系的一个发行版,它的优点真的很多发行版都比不上,比如软件最全,而且软件版本都很新,另外对硬件的支持也是很好的。而且官方还推出了自用的各种工具,比如内核的切换等等。而且作为Ar ...