详细代码我已上传到github:click me 一、 实验要求 在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法。要求程序利用 Spark 进行并行计算。 二、算法设计 2.1 设计思路 变量定义 D为数据集,设Lk是k ...
大家好,下面为大家分享的实战案例是K 频繁相机挖掘并行化算法。相信从事数据挖掘相关工作的同学对频繁项集的相关算法 比较了解,这里我们用Apriori算法及其优化算法实现。 首先说一下实验结果。对于 G, W条记录的数据,我们用了 秒就算完了 频繁项集的挖掘。应该还算不错。 给出题目: 本题的较第四题难度更大。我们在写程序的时候一定要注意写出的程序是并行化的,而不是只在client上运行的单机程序 ...
2015-01-02 14:27 4 4121 推荐指数:
详细代码我已上传到github:click me 一、 实验要求 在 Spark2.3 平台上实现 Apriori 频繁项集挖掘的并行化算法。要求程序利用 Spark 进行并行计算。 二、算法设计 2.1 设计思路 变量定义 D为数据集,设Lk是k ...
我们是通过算法来找到数据之间的关联规则(两个物品之间可能存在很强的相关关系)和频繁项集(经常出现在一起的物品的集合)。 我们是通过支持度和置信度来定义关联规则和频繁项集的 一个项集支持度是指在所有数据集中出现这个项集的概率,项集可能只包含一个选项,也有可能是多个选项的组合。 置信 ...
计算频繁项集: 首先生成一个数据集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果。关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系。其中“频繁”是由人为设定的一个阈值即支持度 (support)来衡量,“紧密”也是由人为设定的一个 ...
|A) 频繁k项集:假设项集I的支持度满足提前定义的最小支持度阈值。则称I为频繁项集,包括k个项的项 ...
GPU计算的目的即是计算加速。相比于CPU,其具有以下三个方面的优势: l 并行度高:GPU的Core数远远多于CPU(如G100 GPU有240个Cores),从而GPU的任务并发度也远高于CPU; l 内存带宽高:GPU的内存系统带宽几十倍高于CPU,如CPU (DDR-400)带宽 ...
基础知识: 用户 薯片(A) 可乐(B) 铅笔(C) 羽毛球(D) 洗衣液(E) 1 √ ...
Apriori和fp-growth是频繁项集(frequent itemset mining)挖掘中的两个经典算法,虽然都是十几年前的,但是理解这两个算法对数据挖掘和学习算法都有很大好处。在理解这两个算法之前,应该先了解频繁项集挖掘是做什么用的。 频繁项集挖掘是关联规则挖掘中的首要的子任务 ...