主成分分析 线性、非监督、全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本数据进行中心化处理 求 ...
转:http: www.cnblogs.com LeftNotEasy archive lda and pca machine learning.html 版权声明: 本文由LeftNotEasy发布于http: leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast gmail.com 前言: 第二篇的文章中谈到,和 ...
2014-11-30 20:38 0 12060 推荐指数:
主成分分析 线性、非监督、全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本数据进行中心化处理 求 ...
本文简单整理了以下内容: (一)维数灾难 (二)特征提取——线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持 ...
前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理。谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较。这这篇博客中我们就来谈谈LDA模型。由于水平有限,积累还不够,有不足之处还望指点。下面就进入正题吧。 为什么要用LDA ...
实验目的 (1)掌握判别分析、主成分分析。 (2)会用判别分析、主成分分析对实际问题进行分析。 实验要求 实验步骤要有模型建立,模型求解、结果分析。 实验内容 (1)银行的贷款部门需要判别每个客户的信用好坏(是否未履行还贷责任),以决定是否给予贷款。可以根据贷款申请人 ...
,可以解释为这两个变量反 映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关 ...
------------------------------PCA简单使用------------------------------ 一:回顾PCA (一)主成分分析法是干什么用的? 数据降维,话句话说就是将数据地特征数量变少,但又不是简单地删除特征。 数据降维地目的可以是压缩数据,减少 ...
之前简要地介绍了一下线性判别函数的的基本性质,接下来我们进行更加详细的讨论。 文中大部分公式和图表来自 MLPP 和 PRML 我们将样本的分布用多元正态分布来近似,为了更加了解这个表达式的含义,我们对协方差矩阵做特征值分解,即Σ = UΛUT 然后将协方差矩阵的逆用同样方法分解 ...
预备知识 首先学习两个概念: 线性分类:指存在一个线性方程可以把待分类数据分开,或者说用一个超平面能将正负样本区分开,表达式为y=wx,这里先说一下超平面,对于二维的情况,可以理解为一条直线,如一次函数。它的分类算法是基于一个线性的预测函数,决策的边界是平的,比如直线和平面。一般的方法 ...